

Abstract
We have discovered that processors can experience

a super-linear increase in detected unrecoverable errors
(DUE) when the write-back L2 cache is doubled in size.
This paper explains how an increase in the cache tag’s
Architectural Vulnerability Factor or AVF caused such
a super-linear increase in the DUE rate. AVF expresses
the fraction of faults that become user-visible errors.
Our hypothesis is that this increase in AVF is caused by
a super-linear increase in “dirty” data residence times
in the L2 cache.

Using proton beam irradiation, we measured the
DUE rates from the write-back cache tags and analyzed
the data to show that our hypothesis holds. We utilized a
combination of simulation and measurements to help
develop and prove this hypothesis. Our investigation
reveals two methods by which dirty line residency
causes super-linear increases in the L2 cache tag’s
AVF. One is a reduction in the miss rates as we move to
the larger cache part, resulting in fewer evictions of
data required for architecturally correct execution. The
second is the occurrence of strided cache access
patterns, which cause a significant increase in the
“dirty” residency times of cache lines without increas-
ing the cache miss rate.

1. Introduction
Soft errors continue to pose a challenge for micro-

processor designers. These errors arise from bit flips
caused by alpha particles from packaging material or
atmospheric neutrons [19]. To meet the soft error rate
(SER) requirement of a target market segment, design-
ers add an appropriate amount of error protection to a
processor. To gauge how these protection schemes can
reduce a processor’s SER, practitioners have evolved a
set of modeling and measurement methodologies. A
soft error can be modeled either as a silent data corrup-
tion (SDC) or a detected unrecoverable error (DUE)
event [12]. An SDC event, as the name suggests, causes
data corruption, whereas a DUE event usually leads to a
system halt, but does not cause any data corruption. The
SDC error rate of a processor, given in Equation 1
below, is the product of two independent components—

SDC AVF and Intrinsic Error Rate of the Circuit—
summed over all circuits that have no appropriate
protection1, where AVF or Architectural Vulnerability
Factor expresses the fraction of faults that results in
user-visible errors. Similarly, the DUE rate of a
processor, given in Equation 2 [14], is the product of the
DUE AVF and Intrinsic Error Rate of the Circuit
summed over all circuits on the chip that are protected
with an error detection scheme, such as parity. .

Unlike measuring performance or power, however,
measuring a processor’s SDC or DUE rate is signifi-
cantly more challenging. Modern CPUs are known to
exhibit Mean Time to Failures (MTTFs) of the order of
hundreds of years [4]. In this study we use accelerated
proton beam testing to accumulate a sufficient number
of errors in a reasonable amount of testing time. Even
with highly accelerated beam fluxes, numerous
repetitions are necessary in product level radiation
testing since DUE events by definition stop the normal
operation of the system and force a reboot into a clean
initial state [2]. A processor’s DUE is much easier to
measure in this way since the processor typically will
have a machine check logged when a DUE event
happens. But so far, SDC rates have proven very hard
to measure correctly in a complex computing system.

1 Appropriate protection refers to error detection. No error detection

capabilities will result in SDC. In some cases, error detection may
be limited in which case SDC may still result in certain situations
(triple bit error on a cache line protected by double-bit error
detection).

SDC SER =
∑ (SDC AVF x Intrinsic Error Rate of the Circuit)
all unprotected circuits

Equation 1. SDC Equation

DUE SER =
∑ (DUE AVF x Intrinsic Error Rate of the Circuit)
all protected, uncorrectable circuits

Equation 2. DUE Equation

Explaining Cache SER Anomaly Using DUE AVF Measurement

Arijit Biswas, Charles Recchia, Shubhendu S. Mukherjee, Vinod Ambrose, Leo Chan, Aamer Jaleel,
Athanasios E. Papathanasiou, Mike Plaster, and Norbert Seifert

Intel Corporation

Measuring the AVF of a processor or processor
structures has proven even more challenging than
measuring a processor’s SDC & DUE rates. This is
because processors today have no support to inject
random faults easily into arbitrary processor structures
and observe their effect, which is needed to figure out
what fraction of faults will become visible to a user, and
hence, result in an error. Li, et al. [9] proposed
hardware changes to compute AVFs, but to the best of
our knowledge, such mechanisms have not been
implemented yet. Measuring the AVF via neutron or
alpha particle exposure has also proven difficult because
the intrinsic SER of circuits vary widely across proces-
sor structures and devices. Sanda, et al. [18] attempted
to compute the overall SDC AVF of the Power6™
processor using a combination of simulation and
neutron beam experiments. We discuss these and other
previous works in more detail in section 7.

This paper examines how to compute the relative
DUE AVF of two multi-megabyte level-2 (L2) proces-
sor caches using a proton beam to explain an SER
anomaly. We discovered that processors can experience
a super-linear increase in DUE and correctable ECC
(error correcting codes) rate when the size of the L2
cache is doubled. The DUE is triggered by the tag
parity. ECC corrections are triggered by the data ECC.
Conventional wisdom would suggest that when the
cache size is increased by 2x, we should only see a 2x
increase in the SER since the per-bit AVF is expected to
remain constant. Instead, an error rate of 4x or more
was observed in our experiments.
During our investigation, we uncovered several facts:
(1) The super-linear increase in DUE was not observed

for all workloads when the cache size was doubled.
(2) Workloads and sites can vary widely across

instances in which this can occur
(3) This phenomenon is independent of a particular

processor type or pipeline
(4) This was not due to a design or manufacturing

difference.
It was critical for us to explain this anomalous be-

havior, even though the absolute error rate in the larger
cache was very small. There are three reasons why we
need an explanation. First, the super-linear increase in
DUE rate can be a cause of serious concern. Second,
the increase in ECC-corrected errors in the data cache is
also a cause of concern because many use notification of
ECC corrections as an indicator of early failures caused
by flaky hardware. In future, even if the parity on the
tags is converted to ECC, we will still have the issue of
increased ECC errors, so we would certainly need to

explain why that happened. Third, we need to ascertain
what design changes may be needed to fix this problem.

Interestingly, we had observed super-linear increases
in the SER from doubling the size of small write-back
caches in our simulation models. This occurred
because, while the average AVF across workloads
showed little sensitivity to size changes, individual
application AVFs could vary widely. The residency
time of data that needs to be correct—also known as
data that is ACE or required for Architecturally
Correction Execution—went up significantly, thereby
increasing the AVF. This happened due to an increase
in ACE residency times of “dirty”, or modified, cache
lines caused by fewer early write-backs for the larger
cache.

Showing these effects for large multi-megabyte
caches was nevertheless a difficult proposition because
our industrial-strength detailed performance simulators
could not simulate a workload long enough to see the
impact of this AVF increase. Cai et al. [4] did observe
the same effect by performing cycle-by-cycle simulation
of large multi-megabyte caches with an embedded ARM
processor. But Cai et al. did not explore in detail why
the super-linear effect was observed. In any case, even
if we did simulate this effect, without actual measure-
ment we would not be able to conclude with high
confidence that this was the root cause of the DUE
increase.

Fortunately, because of the nature of our specific
problem, we were able to use a proton beam combined
with simulation and measurements to establish the root
cause of this super-linear SER increase. It turned out
that almost all the DUE for the processors in question
arose from the parity-protected tags of the write-back L2
cache. This cache signaled a DUE event on any parity
error on a “dirty” cache line, thus allowing us to focus
primarily on the “dirty” cache line hypothesis by which
the ACE residency increases. Consequently, the
processor DUE computed through a beam experiment
would, in effect, be the DUE of the L2 cache itself.
Thus, we have Equation 3 where FIT stands for Failures
in Time (1 FIT = 1 failure in 1 billion hours). Conse-

L2 DUE AVF =
L2 Tag DUE / (L2 Tag FIT/bit x Number of L2 Tag bits) =
Processor DUE / (L2 Tag FIT/bit x Number of L2 Tag bits)
Equation 3. Beam experiment DUE AVF
equation for L2 Cache

2x L2 DUE AVF / 1x L2 DUE AVF =
(2x L2 Processor DUE / 1x L2 Processor DUE) / 2
Equation 4. DUE AVF Ratio equation for
2x:1x L2 cache sizes

quently, the DUE AVF of 2x L2 / DUE AVF of 1x L2 is
given by Equation 4, where 2x L2 refers to the L2 cache
with twice the size of the 1x L2 cache. Dividing by 2
accounts for the increased number of tag parity bits in
the processor with the 2x larger L2 cache size.

Our results with the benchmarks libquantum, art,
and swim—all from the SPEC suite—confirmed our
hypothesis. First, using a standalone cache simulator
based on PIN [10], we determined that libquantum and
swim showed no change in miss rate, but art's miss rate
decreased by 6x when the cache size increased from 1
MB to 2 MB. True to our hypothesis, we did not see
any change in DUE rates for libquantum between a
processor with a 1 MB L2 cache and one with a 2 MB
L2 cache. But, the DUE rate went up by 4.25x for art
under the beam between the 1 MB L2 cache processor
and the 2 MB one, establishing that the AVF indeed
went up by 2.125x2. Swim, however, posed an anomaly
to our initial conjecture. Although swim's cache miss
rate did not change, the DUE rate increased by 3.87x.
We determined that this is still due to the increase in
residency of “dirty” data in the processor L2 cache.
But, this increase happens in swim due to the strided L2
cache access pattern causing dirty data to reside
significantly longer in a 2x larger L2 cache.

Our results have two critical implications. First, we
need to be careful about how we ascertain the SDC and
DUE AVFs of a processor. When we increase the size
of a structure—either due to a design change or because
we are designing a new processor—we cannot blindly
assume that the AVF per bit remains constant. Second,
we have to worry about how to flush the L2 cache and
other structures, so that we can reduce the “dirty” data
residency time, thereby reducing the SDC or DUE rates,
as the case may be.

The remainder of this paper is organized as follows.
Section 2 describes the steps, tools and methodologies
we used during our investigation into the cause of the
super-linear cache SER increase and details both our
simulation and system measurement models and
methodologies. Section 3 explains how we used our
models to develop a working hypothesis to explain how
increases in AVF can occur when the cache size
increases. Section 4 describes the method by which we
chose our benchmarks for system measurement in order
to clearly prove or disprove our hypothesis. Section 5
details the actual system measurement experiments and
their results. Section 0 provides a detailed analysis of
the measurement results and provides insight into how
these results relate to our initial hypothesis. Section 7

2 Note that the AVF goes up by 2.125 = 4.25 / 2. The division by 2 is

to account for the twice the number of bits in our 2x L2.

provides an overview of related work in this area while
section 8 provides a discussion on what can be done to
reduce or eliminate super-linearly increased SER due to
increased cache sizes. Finally, section 9 provides our
final thoughts and conclusions.

2. Steps, Methodology, & Tools
This section describes the steps, methodology, and

tools with which we developed our hypothesis to
explain the cache SER anomaly. The steps we took are
as follows.

• We investigated and eliminated any possible source
of super-linear SER increase other than a signifi-
cantly increased AVF.

• We used our detailed performance simulator to
demonstrate that significant AVF increases were
possible when a structure’s size is doubled.

• We selected two specific processors with the same
core but with different cache configurations—one
with 1 MB L2 and other with 2 MB L2—to be our
target processors for proton beam testing. We refer
to these processors as Processor 1x and Processor
2x to signify the differences in their L2 cache sizes.

• We used our high-level non-timing cache simulator
to identify benchmarks that exhibited the proper
cache behavior profiles for our target multi-
megabyte cache sizes. Specifically, these bench-
marks were art and swim from the SPEC 2000 suite
and libquantum from the SPEC 2006 suite.

• We took our target processors and placed them
under the proton beam while running our target

Table 1. Experimental System Configuration
CPU Processor 1x Processor 2x

Number of CPUs 2

Frequency 2.8 GHz 3.0 GHz

Trace Cache 12 Kuops

L1 Data Cache 16 KB

L2 Cache 1 MB 2 MB

Mfg. Process Same

System Memory 2 GB DDR2

Memory Speed 200 MHz

Chipset Intel E7520 Rev. C4

Southbridge Intel 82801 EB (ICH5)

Hard Drive 76.3 GB

benchmarks. The target systems were configured
as shown in Table 1 and were running the 32-bit
version of Microsoft Windows Server 2003 operat-
ing system.

• Finally, we analyzed the results and corroborated
our simulation expectations with performance
counter data obtained using the Vtune™ perform-
ance counter monitoring software.

The rest of this section describes the AVF simulator
(Section 2.1), non-timing cache simulator (Section 2.2),
and our proton beam experimental set up (Section 2.3).

2.1 Modeling AVF
To prove our hypothesis that doubling the size of a

structure can cause a super-linear increase in AVF, we
used a detailed performance simulator that models a
Core DuoTM-like processor in the Asim performance
modeling infrastructure [6] and is augmented with the
AVF instrumentation. The AVF instrumentation is
based on two concepts. The first was the concept of
ACE (required for architecturally correct execution) and
un-ACE (not required for ACE) [13]. AVF for a bit is
then defined as the ratio of the total time a bit is in ACE
state and the total simulation time. The second concept
was the use of Hamming-distance-one analysis, which
allows us to compute the AVF of address-based
structures [3]. Using this AVF-instrumented perform-
ance model, we simulated over 700 benchmark traces.
The traces were generated as representative regions of
the given benchmarks based on PinPoints [16].

2.2 Modeling Cache Misses
To prove our hypothesis that residence time in the

cache can increase dramatically, thereby causing a
significant increase in AVF, we needed a cache
simulator that could give us the miss rate of selected
benchmarks for large multi-megabyte caches. For this
analysis, we used CMP$im [8]. While the detailed
performance model referred to in Section 2.1 was much
faster than a low-level register transfer level model, it
was neither fast enough to run entire benchmarks to
completion nor capable of effectively modeling cache
AVFs for caches greater than 256 KB.

CMP$im contained no timing information or micro-
architectural details and executed only static instruction
traces allowing for significantly faster simulations. This
allowed us to simulate entire benchmarks with multi-
megabyte caches. While we could not compute the
cache AVF from such a model, it did give us the cache
miss profiles (e.g., miss rate for different benchmarks
for different cache sizes) from which we could reason
about our hypothesis and develop our experiment.

2.3 Measuring SER with protons
Once we had developed our hypothesis and selected

the specific benchmarks based on their cache miss
profiles, we had to irradiate the processors running the
specific benchmarks under the proton beam. We used
industry standard practices in measuring the SER of a
chip arising from atmospheric neutrons using an
accelerated proton beam, as described in the JEDEC
standard [1], Hiemstra and Baril [7], and Sanda, et al.
[18]. The experimental process consists of the follow-
ing steps:

• Booting the system under test

• Continuously looping the benchmark of choice

• Opening the shutter for the particle beam

• Focusing the beam on the chip of interest (Figure 1)

• Counting the particle fluence that impinges on the
chip until system fails

• Capturing logs of the failure behavior
The beam diameter is selected to be large enough to

irradiate the entire silicon chip—in our case the
microprocessor under test—but not any other silicon
component in the system. Also, we needed to only
compute the DUE rate arising from the processor.
Hence, we only counted those failures that resulted in a
processor machine check architecture log signaling a
DUE error. Any run that did not give rise to a processor
machine check log was discarded.

We chose the Francis H Burr Proton Therapy Center
proton beam in Boston, Massachusetts due to both beam
availability and achievable flux considerations. The
proton beam available at this center is a mono-energetic
148 MeV proton beam, which is neither a neutron beam
nor does it mimic the energy spectrum of atmospheric

 Figure 1. Configuration for proton beam

experiment

neutrons like the beam at LANSCE in Los Alamos. The
LANSCE beam is typically used to compute the SER of
a chip (after scaling down the flux to reflect the neutron
flux rate at a specific altitude). Nevertheless, the use of
this mono-energetic beam was appropriate for our
experiments. The high-energy proton beam appropri-
ately mimics the behavior of neutrons at this higher
energy [19]. The additional Coulombic charge interac-
tion induced by protons is negligible compared to the
nuclear forces generated by the high-energy protons
[14].

Further, we are only interested in the relative DUE
AVFs of two silicon chips in the same process technol-
ogy. The FIT/bit of the L2 cache tags in both chips
resulting from the nuclear interaction of the mono-
energetic beam will be the same. Given that AVF itself
is independent of the FIT/bit, we can still compute the
relative DUE AVF as described in Equation 4.

To compute each processor’s DUE Mean Time to
Failure (MTTF) rate under the mono-energetic proton
beam, we must conduct an appropriate number of
experiments to ensure statistical significance. For each
experimental run we exposed the same chip to the beam
until we observe a user-visible error with a correspond-
ing machine check log from the processor signifying a
DUE error. This gave us a Time to Failure (TTF) for
each experiment. We excluded TTFs that resulted in no
machine check logs as these were incidences of SDC
that resulted in system crashes and we were only
interested in DUE for this study. The run-to-run
variation in the measured TTF’s for the same chip was
large, as expected, given the exponential distribution
due to the random nature of the process. We gathered
10 TTF numbers for each chip, which enabled us to
detect a DUE MTTF ratio of 4 with 90% confidence,
and with greater confidence on MTTF ratios that
measured greater than 4. We will also show in Section
5 that 10 runs are sufficient for our results to converge.

3. Developing the Hypothesis
The first step in identifying the cause of the super-

linear SER increase was to eliminate possible causes so
that what remains is the most likely cause of this
behavior. The principle we followed is known as Strong
Inference as described by Platt in his landmark paper
[17]. Recall from Equation 2 that DUE rate of a circuit
= DUE AVF of the circuit x intrinsic error rate of the
circuit. Thus, either the intrinsic error rate had in-
creased without our knowledge or the AVF had
increased for some reason.

3.1 Identifying the Cause
We ruled out any external or platform-level issues,

such as faulty power supplies or load lines. The
remaining internal possibilities can be divided into four
categories: electrical, design, manufacturing and AVF.
By systematically analyzing the processor chip, we
ruled out electrical problems, such as internal power
delivery issues, increased RC delay on the cache bit-
lines and word-lines due to the larger cache size, etc.
We also determined that there were no design-related
issues, such as a different or defective SRAM cache
cell. We also eliminated any manufacturing issues, such
as defective mask design or different process parame-
ters, to be the cause of this problem. This left us with
the only likely root cause—that of increased AVF in the
larger cache. Proving that AVF was the most likely
cause of this problem was no simple feat and is the topic
of this paper.

3.2 Identifying the Mechanisms
We had some indication from our AVF-instrumented

performance model that significant increases in AVF
could arise for the same workload when we increased
the size of a structure. For example, when changing the
size of a write-back cache from 32K to 64K, some
benchmark simulations showed as much as a 100x
increase in the AVF of the cache data and tags. In yet
another example, we observed an AVF increase of about
13x for the data TLB (translation lookaside buffer) for
some benchmarks when we increased its size from 64
entries to 128 entries.

The underlying cause of this AVF increase is an
increase in ACE data residency time. This ACE
residency time in the bigger structure (e.g., cache, TLB,
etc) can increase significantly if the working set for a
given workload fits into the bigger structure but not into
the smaller structure, thereby causing significantly
higher miss rates in the smaller structure.

In the case of a write-back cache, there were two
distinct mechanisms by which ACE residency time
could increase. The first involved increased cache
misses in the smaller cache that evicted “clean” or
unmodified cache lines, which rendered ACE time un-
ACE. The second involved increased cache misses in
the smaller cache that evicted “dirty” or modified cache
lines, which forced “dirty” data to be written back
sooner. Next, we consider each of these cases in detail.

The first case is that increased cache misses in the
smaller cache caused the ACE time of “clean” cache
lines to become un-ACE. Figure 2 shows 2 cache lines,
one from a small cache (referred to as 1x cache from
here onwards) and one from a 2x larger cache (referred
to as 2x cache from here onwards). In the 2x cache

case, we see a fill followed by 2 reads. Assuming that
all accesses are made by ACE instructions, the cache
line for the 2x cache is ACE from the fill to the last
read. In the 1x cache however, we get another cache
access to an address which maps to this same cache line
(this same access maps to a different cache line in the 2x
cache since there are 2x more lines). This access occurs
between the 2 read accesses to line A. This cache miss
forces an eviction and fill in the 1x cache and, as a
result, renders the time from the first read to the eviction
un-ACE. The time from the fill of address B to the
second read of address A (which misses and re-fills the
1x cache with the old data) could be ACE or un-ACE
depending on the accesses to B during this time., Thus,
this example demonstrates that the AVF for this cache
line can be significantly greater for the 2x cache than the
1x cache.

The second case is specific to a write-back cache.
Recall that a write-back L2 cache stores processor
writes in the L2 cache in modified or “dirty” state and
does not write them back to main memory immediately.
In this scenario, depicted in Figure 3, we again have 2
cache lines, one belonging to a 2x cache and one to a 1x
cache. In this case, there is a fill followed by a write in
both caches. After the write, the cache line becomes
“dirty” and is ACE from the write until it is written back
to a higher level of cache or to main memory. In the 1x
cache we again see a cache miss that forces an eviction
of the cache line. However, since the line is “dirty” this
will result in the data being written back at this time. In
the 2x cache the “dirty” line continues to reside in the
cache until the end of the program when the cache lines
are flushed. As a result, the ACE time and thus the

AVF for the “dirty” cache line is significantly larger for
the 2x cache than the 1x cache.

3.3 Applying Our Hypothesis to the Target
Cache
In our specific case, the cache SER anomaly was

observed in both the write-back L2 cache tags (as
correctable machine check logs or DUE) as well as the
L2 cache data (as logged ECC corrections). The data
portion of the cache was protected with ECC, so a bit
flip in the data array resulted in an ECC correction, but
not a DUE event. In this case, single-bit errors in both
“clean” and “dirty” cache lines were correctable.

The tags however were protected only with parity,
so a bit flip in the tag array for a “dirty” cache line
resulted in a DUE event. Tag parity errors on “clean”
cache lines were corrected automatically in the design
by invalidating the corrupt cache line. An error in a
“dirty” cache line could not be corrected via the same
mechanism since the specific cache line had the most
up-to-date copy. Thus, a fault in the L2 tag array will
only result in an actual error in the case depicted in
Figure 3 since any fault on a “clean” line (Figure 2) is
recoverable via invalidation.

Interestingly, however, the ACE un-ACE conver-
sion in the 1x cache (Figure 3) can be due to recovery of
“clean” cache lines. In other words, if “dirty” data is
evicted and replaced by “clean” data in the 1x cache,
then the clean cache line ends up holding un-ACE data,
instead of ACE causing the DUE AVF to go down.

As we can see, both “clean” and “dirty” data can
cause super-linear increases in SER in the L2 cache tag

Figure 3. “Dirty” cache line scenario

Figure 2. “Clean” cache line scenario

and data arrays. For the rest of this paper, however, we
only focus on the cache tag DUE rates because our
proton beam experiments focused on explicitly measur-
ing the DUE rate of the processors under test.

4. Choosing the Benchmarks
As explained in the previous section, we expected

the L2 cache tag DUE AVF to increase if the “dirty”
residency times increased. One way to indirectly
determine this is to observe whether the cache miss rate
drops significantly when the cache size is doubled.
Specifically, the two processors we were irradiating
under a proton beam had 1MB and 2MB L2 cache sizes,
so we needed to find benchmarks whose working set did
not fit in the 1MB cache, but did fit in the 2MB cache.
This should help ensure that the 1x cache has a higher
miss rate than the 2x cache. We also needed bench-
marks whose working set did not fit into either a 1 MB
or a 2 MB cache. Using CMP$im, we generated cache
miss profiles for various SPEC benchmarks for a 1 MB
and 2MB L2 cache. From these runs we chose 3 specific
benchmarks that had the desired profiles: art and swim
from SPEC2000 and libquantum from SPEC2006.

Figure 4 shows the miss profiles for these three
benchmarks. Number of misses is shown on the X-axis
while the Y-axis shows the various cache sizes that we
simulated. The thick vertical lines indicate the 2 target
cache sizes in each case (1 MB and 2MB). The miss
profile for art indicates a significant reduction (~6x) in
the number of misses when going from a 1MB to a 2MB
cache. Thus, we would expect that art should show a
super-linear SER for the 2MB part than the 1MB part if
our hypothesis holds. The miss profiles for libquantum
and swim indicate that there is no change in the number
of misses between a 1MB and a 2MB cache. If our
hypothesis holds, we do not expect a super-linear SER
increase for these two benchmarks.

5. Conducting the Experiment
We took the two target processors—one with 1MB

L2 cache and one with 2MB L2 cache in systems
configured as per Table 1—running the three bench-
marks—art, swim, and libquantum—to the Francis H
Burr Proton Therapy Center at Massachusetts General
Hospital in Boston. Table 2 shows the results of the
proton experiments for the three target benchmarks. As
expected, art showed a super-linear increase in DUE of
4.25x between the 1 MB and 2 MB parts. Similarly, as
expected, the proton measurements for libquantum
showed a DUE increase of 1.2x from 1 MB to 2 MB
representing a small 20% increase. The proton meas-
urements for swim, however, indicated a 3.87x super-
linear increase in the SER rate, which was contrary to

our expectation since swim’s cache miss rate did not
change between 1 MB and 2 MB L2 caches. We will
analyze these results in detail in Section 0.

To achieve statistical significance for these numbers,
we ran 10 repetitions of proton beam experiments for
each of the 3 benchmarks with each of the 2 processors
(30 runs total per processor). This sample size enabled
us to detect a DUE MTTF ratio of 4 with 90% confi-
dence, and with greater confidence on MTTF ratios
larger than 4.

Figure 5 shows this effect graphically. Since soft
errors arise from a random process, there is no correla-
tion observed between the duration of subsequent trials.
A graphical demonstration of how confidence intervals
for MTTF evolve as more data is collected can be
obtained by randomizing the order in which the trial
runs were collected, and computing MTTF as a function
of number of runs for each of the randomized sets.
Figure 5 shows how we achieved increased statistical
confidence for art through the funnel-shaped plot.
Figure 5 also shows the importance of collecting the
appropriate number of data points. An inappropriately
small number of data points can easily lead to incorrect
conclusions.

6. Analyzing the Results
To explain the DUE ratios given in Table 2, we

obtained L2 cache-related metrics, shown in Table 3.
We used Intel’s Vtune™ performance monitoring
software to poll the hardware performance counters and
configured the counters to count dirty reads, read
misses, and write-backs. The simulation data provided
misses per thousand instructions (MPKI) and write
misses. This data is given in Table 3 in the form of
2MB:1MB ratios. A ratio less than 1 represents a

 1 MB 2 MB

Figure 4. Cache miss profiles for art,
swim, and libquantum.

decrease from 1 MB to 2 MB while a number greater
than 1 represents an increase. A ratio of 1 represents no
change in that statistic between the two processors.
Armed with this data, we analyzed the proton beam
results in the following subsections.

Note that our goal was not to exactly match the
numbers or predict the exact increase in DUE or AVF.
Rather, we are only trying to show that AVF can
increase super-linearly when the cache size is doubled.

6.1 Art and libquantum
As expected from simulations, art showed a super-

linear increase in DUE of 4.25x which was further
verified by the Vtune™ data and simulation results.
The simulation statistics for art from Table 3 indicate
that misses decreased by 6x. More specifically, write
misses decreased by 4x when going from 1 MB to 2
MB, which helped increase the “dirty” data residence
time in the 2 MB cache. Similarly, Vtune™ data
showed that read misses decreased by 3.17x, write-
backs decreased by 32.75x and reads to “dirty” cache
lines increased by 1.56x from 1 MB to 2 MB. The
“dirty” read increase and the significant decrease in
write-backs are clear indications that the ACE “dirty”
data residency time did increase super-linearly, thereby
increasing the AVF in the same way.

Libquantum beam testing results showed a DUE
increase of only 1.2x, which is not super-linear, as we
expected. The simulation and Vtune™ data for libquan-
tum in Table 3 further confirm this hypothesis. All the
statistics remained very close to 1 indicating little to no
change in libquantum’s executions across the two cache
sizes.

6.2 The swim Conundrum
The proton measurements for swim indicated a 3.87x

super-linear increase in the DUE rate, but no change in
cache miss rates between the 1 and 2 MB L2 caches.
This was superficially contradictory to our hypothesis
that the DUE went up super-linearly because the “dirty”
data (and, hence ACE data) residency time in the cache
increased.

Since the cache miss profile as well as the Vtune™
and other simulation statistics from Table 3 were so
similar between libquantum and swim, we looked for
any fundamental differences between the cache access
behaviors for these two benchmarks. One difference
was in the actual computations performed by each
benchmark. Swim’s main loop is primarily a large
matrix operation while libquantum’s computation is far
more irregular. Swim is a shallow water wave modeling
benchmark which performs a large floating point matrix
operation over which it iterates. Libquantum, by
contrast, is a quantum computer simulation benchmark.

As a result, one might expect swim to have a more
regular, strided [11] cache access pattern than libquan-
tum. Figure 6 shows data generated from our high-level
cache simulation model clearly showing that swim has
both a regular access pattern (caused by strided
accesses) as well as a very regular pattern of “dirty”
residency while libquantum has far more random cache
behavior. In this figure, there are two graphs for each
benchmark. The X-axis is time for both graphs. The Y-
axis is “Accesses per 1000” for the top graph, which
shows how many cache accesses (loads and stores)
occurred at a given point in time, and “% Dirty Lines”

Table 2. Accelerated proton beam meas-
urement results for art, swim, and libquan-
tum

Benchmark DUE SER Ratio
(Processor 2x / Processor 1x)

Art 4.25

Swim 3.87

Libquantum 1.2

Table 3. Simulation and Vtune™ perform-
ance counter data for art, swim and libquan-
tum

*Vtune™
**Simulation

Art
Ratio:

2MB/1MB

Libquantum
Ratio:

2MB/1MB

Swim
Ratio:

2MB/1MB

 MPKI** 1/6.00 1 1

 Dirty Reads* 1.56 1.06 0.98

 Write Misses** 1/4.00 1 1

 Read Misses* 1/3.17 1/1.14 1/1.16

 Write-backs* 1/32.75 1/0.99 1.00

Figure 5. Cumulative TTF runs vs. MTTF
(a.u. = arbitrary unit)

0
20
40
60
80

100
120

0 2 4 6 8 10
Number of TTF Runs

M
T

T
F

(a
.u

.)

1 MB (art)
2 MB (art)

for the bottom graph, which is an indication of “dirty”
line utilization (what percentage of the cache contains
“dirty” data) at a given point in time.

We developed an example to determine whether a
strided cache access pattern can cause increased “dirty”
residency times while not affecting the number of
misses when increasing the cache size. In this example,
we assume 2 caches, one with 4 entries (1x cache) and
the other with 8 entries (2x cache). We assume a
perfectly strided access, meaning that the cache accesses
will walk through the entries of the cache. In the
simplest case, we assume a single strided write occurs at
some regular interval. In this case, once we have
simulated for a sufficient period of time, both caches
will simply have “dirty” entries all the time and the
AVF is 100% for both caches. Hence, the SER rate will
increase linearly with cache size while the number of
misses will remain constant since all writes miss and the
number of write-backs will remain constant since all
“dirty” data will be written back at the end of the
program.

However, different mixes of reads and writes can
result in a significant increase in the AVF for strided
cache accesses. For instance, if we take the cache size
and stride assumptions from the simple example and
change the strided access pattern to be 2 reads followed
by 1 write, we see the following behavior as detailed in
Figure 8.

• At Time=0 we read entry 1 on both caches.

• At Time=1 we read entry 2 on both caches.

• At Time=2 we write entry 1 on both caches.
Assuming the caches started with all entries invalid,
we now have 2 read misses and 1 write hit for both
caches. The write causes the first entry of both
caches to become “dirty” and so will begin to ac-
crue “dirty” residency time until it is written back.

• We continue in this fashion until Time=6

• At Time=6 the first read wraps around to the first
entry in the 1x cache, invalidating it and forcing it
to write-back. However, the first entry in the 2x
cache continues to be “dirty” since it will not wrap
around for some time yet. At this point in our ex-
ample, we begin to see the dirty residency times
diverge between the two caches while the miss
counts remain the same.

• At Time=11, the 2x cache has accumulated a
“dirty” residency time almost 3x higher than that of
the 1x cache, yet the miss counts remain roughly
the same.

• At the end of the program, all dirty lines will be
written back so the number of write-backs will be
the same.

Here we have shown that a strided access pattern can
indeed result in a super-linear increase in the “dirty”
residency time of caches. Different access patterns of
reads and writes can change the rate of this super-linear
increase. However, the number of misses, “dirty” reads,
and write-backs can be held very nearly constant
between the two caches. This explains how the swim
benchmark can show a super-linear increase in SER
while the indirect indicators of cache line residency
continue to show no differences between the 2 cache
sizes. In this case, swim’s strided cache access pattern
which has a 4:1 ratio of loads to stores, coupled with the
fact that its data set does not fit cleanly into either cache,
results in a significant increase in “dirty” cache line
residency times. This in turn leads to the significant
increase in AVF that causes the 3.87x increase in SER
from the 1 MB to the 2 MB cache.

a) swim b) libquantum

Time

Figure 6. Cache access and “dirty” line utilization patterns for swim and libquantum

6.3 Summary
In order to determine the root cause of the super-

linear cache SER when cache sizes double, we em-
ployed numerous methods. We started by enumerating
all the possible sources of this increase and eliminating
all but AVF related effects. Using simulation data we

convinced ourselves that size changes in cache arrays
could indeed result in significant changes in AVF when
running the same workload. Using the simulation
studies we formulated the hypothesis that increases in
“dirty” cache line residency times were responsible for
the cache tag AVF increase. We employed a high-level
cache model to choose benchmarks that we could use
for accelerated proton beam testing on actual processors.

 Figure 8. Example of super-linear “dirty” residency increase for strided cache access

Figure 7. Example of super-linear “dirty” residency increase for strided cache access

Armed with these benchmarks, we took two processors
with 1 MB and 2 MB of L2 cache respectively and
irradiated them using a proton beam while running
several iterations of each of the three chosen bench-
marks.

The proton test results on all three chosen bench-
marks reinforced the hypothesis that increases in “dirty”
residency times of cache lines led to the super-linear
DUE SER increase. We identified two mechanisms by
which this happens: longer residency times due to lower
miss rates such as in art (with the opposite effect seen in
libquantum), and strided cache access patterns causing
increased “dirty” residency times such as in swim.

7. Related work
In this section, we review some related work in the

areas of AVF sensitivity to structure sizes and SER
measurements. Both Biswas et al. [3] and Cai et al. [4]
noticed that the AVF of a single workload can vary
significantly as structure sizes change. However neither
explored in detail why or how this happens. Biswas, et
al. noticed that, even though the AVF of a single
workload can vary due to structure size, the average
AVF across numerous workloads tends to stay fairly
constant across structure sizes. They did not pursue the
matter any further than that observation. Cai et al. noted
that a single workload AVF can increase as a structure’s
size increases due to the working set size fitting into the
structure. They did not explain the mechanism by
which this occurs. Additionally, neither Biswas et al.
nor Cai et al. attempted to measure the error rates of
actual systems to corroborate their simulation data.

Recently, Sanda, et al. [18] described their method-
ology and results for SDC measurement of the
Power6™ processor using accelerated beam testing.
There were two main differences between Sanda, et al.’s
work and the work presented here. First, Sanda, et al.’s
measurements targeted SDC, not DUE as in our study.
DUE errors are easier to measure since they result in a
machine check log, whereas SDC errors do not result in
machine check logs and it can take a long time until the
error becomes user-visible (for instance in the output of
a program) and can be caused by a variety of unpro-
tected structures on a chip. Second, Sanda, et al. did not
provide any data on how structure size changes affect
the error rate.

8. Discussion
We have shown that increases in structure size can

indeed result in a non-linear increase in SER caused by
increasing AVFs, but what can we do to account for
this? Such SER variation can make it very difficult for

system users to accurately predict the effect on error
rates when migrating to new systems with larger caches.

While such upgrades are easy to characterize for
performance and power, characterizing for SER in the
face of architectural and workload dependent variation
can prove very difficult. In our particular case, one
solution would be to protect the L2 cache tags with ECC
rather than parity. While this would not eliminate the
underlying AVF variability, it would reduce the
incidence of cache DUE to nearly zero since all single-
bit errors would become correctable.

Another possible solution that addresses the underly-
ing AVF variability is to periodically flush the caches.
Biswas, et al. [3] proposed periodic cache flushing as a
way to reduce the AVF of structures such as TLBs and
caches, showing significant reductions in AVF for a
minimal performance loss.

9. Conclusions
We discovered DUE rates in write-back caches with

parity-protected tags can increase super-linearly as the
cache size doubles. In this paper, we set out to prove
that Architectural Vulnerability Factor or AVF increases
brought on by increases in residency time of “dirty”
cache lines was the root cause of this phenomenon.

We investigated what appeared to be a DUE SER
anomaly on the tags for large cache processors using
several techniques. We used two different simulation
models to develop a hypothesis to explain how AVF
could cause this behavior. We then designed an
experiment, choosing three specific SPEC benchmarks
that exhibited cache miss profiles conducive to proving
or disproving our hypothesis and measured the DUE
error rates on two processors (with 1 MB and 2 MB of
L2 cache, respectively) when running the chosen
benchmarks. The results of our accelerated proton beam
system measurements along with performance counter
data proved that our hypothesis did indeed hold. We
saw a 4.25x DUE SER increase for art, a 3.87x increase
for swim, and a 1.2x increase for libquantum.

We identified two ways in which the “dirty” resi-
dency times could increase. One was by observing the
miss rates. As the data set for a workload fits into the
larger cache, the relative miss rates decrease dramati-
cally, thereby increasing the AVF and causing super-
linear increases in the DUE rate. This mechanism
accounted for the super-linear DUE increase measured
in art as well as the lack of super-linear increase seen in
libquantum.

The second involved strided cache accesses. A
workload that exhibited regular, strided cache access
patterns could cause a significant increase in the “dirty”

residency times of the cache without being reflected in
either the miss rates or the write-back rates. Neverthe-
less, this would have the same effect of increasing the
cache AVF, resulting in a super-linear increase in the
DUE SER. This second mechanism accounted for the
super-linear DUE increase observed for swim.

We gleaned two important insights from these re-
sults. First, we must be careful about how we ascertain
the SDC and DUE AVFs of a processor. We cannot
simply assume that the AVF per bit stays constant as
structure sizes increase across designs. Finally, we must
consider ways to reduce the dirty data residency time,
such as periodic flushing, thereby reducing the SDC or
DUE rates.

10. REFERENCES
[1] “Test Method for Beam Accelerated Soft Error Rate,”

JEDEC JESD89-3A.

[2] “Measurement and Reporting of Alpha Particle and
Terrestrial Cosmic Ray-Induced Soft Errors in Semicon-
ductor Devices”, JEDEC Test Standard No. 89A, Sep.
2006.

[3] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S.S.
Mukherjee, R. Rangan, "Computing Architectural Vul-
nerability Factors for Address-Based Structures", 32nd
International Symposium on Computer Architecture
(ISCA), June 2005.

[4] D. Bossen, "CMOS Soft Errors and Server Design", 2002
IEEE Int'l Reliability Physics Symposium, Tutorial
Notes—Reliability Fundamentals, IEEE Press, 2002, pp.
121_07.1–121_07.6.

[5] Y. Cai, M. T. Schmitz, A. Ejlali, B. M. Al-Hashimi, and
S. M. Reddy. “Cache Size Selection for Performance,
Energy and Reliability of Time-Constrained Systems,”
Asia and South Pacific Conference on Design and Auto-
mation, January 2006.

[6] J. Emer, P. Ahuja, N. Binkert, E. Borch, R. Espasa,
T. Juan, A. Klauser, C.K. Luk, S. Manne, S.S. Mukher-
jee, H. Patil, S. Wallace, “Asim: A Performance Model
Framework,” IEEE Computer, 35(2):68-76, Feb. 2002.

[7] D. Hiemstra and A. Baril, “Single Event Upset Charac-
terization of the Pentium® MMX and Pentium® II Mi-
croprocessors using Proton Irradiation,” IEEE Transac-
tions on Nuclear Science, Vol. 46, No. 6, pp. 1453-1460,
Dec., 1999.

[8] A. Jaleel, R. S. Cohn, C. K. Luk, and B. Jacob.
“CMP$im: A Pin-Based On-The-Fly Multi-Core Cache
Simulator”. Workshop on Modeling, Benchmarking and
Simulation, 2008.

[9] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Online
Estimation of Architectural Vulnerability Factor for Soft
Errors,” Proceedings of 35th International Symposium on
Computer Architecture (ISCA '08), June 2008.

[10] C. K. Luk, R. Cohn, R. Muth, H. Patil, Artur Klauser, G.
Lowney, S. Wallace, V. J. Reddy, and K. Hazelwood,
“Pin: building customized program analysis tools with
dynamic instrumentation,” ACM SIGPLAN conference on
Programming language design and implementation,
2005.

[11] C. K Luk, R. Muth, H. Patil, G. Lowney, R. Cohn, and R.
Weiss, Profile-Guided Post-Link Stride Prefetching,”
Proceedings of the 2002 International Conference on
Supercomputing (ICS'02), pages 167-178, June 2002.

[12] S. Mukherjee, “Architecture Design for Soft Errors,”
Elsevier, Inc. February, 2008.

[13] S.S. Mukherjee, C.T. Weaver, J. Emer, S.K. Reinhardt,
T. Austin, “A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-
Performance Microprocessor,” 36th Annual International
Symposium on Microarchitecture (MICRO), December
2003.

[14] H.T Nguyen, Y. Yagil, N. Seifert, M. Reitsma, “Chip-
Level Soft Error Estimation Method”, IEEE Transactions
on Device and Materials Reliability, Volume 5, Issue 3,
Sept. 2005, pp. 365 – 381

[15] E. Normand, “Extensions of the Burst Generation Rate
Method for Wider Application to Proton/Neutron-
Induced Single Event Effects,” IEEE Transactions on
Nuclear Science, Vol. 45, pp. 2904-2914, (1998).

[16] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. “Pinpointing representative portions of
large Intel Itanium programs with dynamic instrumenta-
tion.” 37th Annual International Symposium on Microar-
chitecture (MICRO-37), December 2004.

[17] J.R. Platt, “Strong Inference,” Science Magazine,
Volume 146, Number 3642, October 1964

[18] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B.
McBeth, J. Ackaret, R. Lockwood, J. Schumann, and C.
R. Jones, “Soft-error resilience of the IBM POWER6
processor,” IBM Journal of Research and Development,
Soft Errors in Circuits and Systems, Volume 52, Number
3, pp. 275-284 (2008).

[19] N. Seifert, B. Gill, K. Foley, P. Relangi, “Multi-Cell
Upset Probabilities of 45nm High-k + Metal Gate SRAM
Devices in Terrestrial and Space Environments”, Pro-
ceedings of the International Reliability Physics Sympo-
sium (IRPS), pp. 181-186, 2008.

[20] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V.
Zia, C. Brookreson, A. Vo, S. Mitra, B. Gill, J. Maiz,
“Radiation-Induced Soft Error Rates of Advanced CMOS
Bulk Devices”, Proceedings of the IEEE International
Physics Symposium, pp. 217-225, 2006

