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Abstract
Recent many-core processors such as Intel’s Xeon Phi

and GPGPUs specialize in running highly scalable parallel
applications at high performance while simultaneously em-
bracing energy efficiency as a first-order design constraint.
The traditional belief is that full utilization of all available
cores also translates into the highest possible performance.
In this paper, we study the effects of cache capacity con-
flicts and competition for shared off-chip bandwidth; and
show that undersubscription, or not utilizing all cores, often
yields significant increases in both performance and energy
efficiency. Based on a detailed shared working set analysis
we make the case for clustered cache architectures as an
efficient design point for exploiting both data sharing and
undersubscription, while providing low-latency and ease of
implementation in many-core processors.

We propose ClusteR-aware Undersubscribed Schedul-
ing of Threads (CRUST) which dynamically matches an
application’s working set size and off-chip bandwidth de-
mands with the available on-chip cache capacity and off-
chip bandwidth. CRUST improves application performance
and energy efficiency by 15% on average, and up to 50%,
for the NPB and SPEC OMP benchmarks. In addition, we
make recommendations for the design of future many-core
architectures, and show that taking the undersubscription
usage model into account moves the optimum performance
under the cores-versus-cache area trade-off towards design
points with more cores and less cache.

1 Introduction
Increasing core counts on many-core chips require pro-

cessor architects to design higher-performing memory sub-
systems to keep these cores fed with data. An important
design trade-off is the allocation of die area and power bud-
get across cores and caches [9, 19]. Adding cores increases
the theoretical maximum performance of the chip, but suffi-
cient amounts of cache capacity must be available to exploit
locality; if not, real-world performance will suffer. Yet,
the notion of enough cache capacity depends on the ap-
plication’s working set characteristics, which varies widely
across applications, input sets and even different kernels or

phases within an application. Designing a processor archi-
tecture that maximizes performance for most benchmarks
(by maximizing core count) but does not cause unaccept-
able degradation when the working set does not fit in cache,
is a difficult balancing act.

Proposals have been made to make the cache architecture
more adaptive. Shared caches can exploit dynamic capac-
ity allocation across cores, as can hybrid approaches such
as Cooperative Caching [3], Dynamic Spill-Receive [17] or
Reactive NUCA [8]. These techniques exploit heterogene-
ity of threads running on different cores. Yet, the main use
case for many-core processors is to run data-parallel ap-
plications, which are often highly structured and typically
employ fork-join parallelism or other bulk-synchronous
paradigms. Threads therefore act homogeneously, which
invalidates the assumption that some cores have unused
cache capacity that can be used by others.

This application behavior advocates a workload-adaptive
approach, in which the only remaining degree of free-
dom is to reduce the number of (concurrently executing)
threads [6, 21, 22]. We propose ClusteR-aware Undersub-
scribed Scheduling of Threads (CRUST) as a mechanism
to dynamically reduce the number of application threads,
such as to match the application’s working set size and off-
chip bandwidth demands with the available on-chip cache
capacity and off-chip bandwidth. CRUST reduces thread
count for improving performance through locality, as well
as for improving energy efficiency of bandwidth-bound ap-
plications. In the latter case, extra cores that are stalled on
off-chip memory requests do not contribute to application
performance and can be disabled to save power and en-
ergy. We implement and evaluate CRUST in the context
of OpenMP fork-join based applications, which allows it
to exploit phase behavior by being aware of parallel loop
boundaries. The concepts used by CRUST can also be ap-
plied to other parallel runtimes, e.g., by dynamically chang-
ing the number of worker threads in applications that exploit
request-based parallelism.

In addition, we perform a detailed shared working set
analysis for a number of data-parallel applications, and
make the case for clustered cache architectures as an ef-



ficient design point for many-core architectures. Clustered
caches, or multiple last-level caches each shared by a subset
of cores, enable data sharing within each cluster, while pro-
viding low access latencies (comparable to private caches)
and ease of implementation (simpler than dynamic alloca-
tion policies in fully shared NUCA caches). We find clus-
tered caches to be particularly beneficial in the context of
undersubscription by providing a constant total-chip cache
capacity, thereby improving performance, while conserving
energy when a number of cores per cluster are disabled —
a critical property that private caches do not provide.

Going one step further, and assuming CRUST as a run-
time substrate, we find that the optimum many-core design
point shifts towards processors with more cores and less
cache. This result demonstrates that considering a CRUST
runtime at design time leads to a higher-performing pro-
cessor compared to a design process ignorant of undersub-
scription. It also leads to a processor system that can better
deal with variations in workload behavior. Consequently,
CRUST improves performance and energy-efficiency in
practice when running a wide variety of workloads.

The key contributions made in this paper are:

• We make the case for clustered caches in future large
many-core architectures, based on a detailed shared
working set analysis, and show they are the ideal
middle ground between private and shared (NUCA)
caches. Moreover, clustered caches support the use
case of undersubscription by keeping all cache capac-
ity accessible even when some cores are disabled.

• We show how undersubscription of clustered cache ar-
chitectures can improve performance and save energy;
and propose ClusteR-aware Undersubscribed Schedul-
ing of Threads (CRUST), a set of simple yet powerful
mechanisms for dynamically adapting thread count.
CRUST leads to performance and energy efficiency
improvements of 15% on average, and up to 50%, for
the NPB and SPEC OMP benchmarks. It improves on
existing methods for bandwidth-aware threading [21]
by taking data sharing and its effect on off-chip band-
width requirements into account, next to being cache
capacity aware.

• Finally, we revisit the cores-versus-cache area trade-
off for many-core processors, and show how tak-
ing the interplay of clustered caches and undersub-
scription into account at design time leads to higher-
performance, adaptive architectures that are more re-
silient to variations in workload characteristics.

2 Motivation
In this section we analyze multi-threaded application

performance as a function of thread count to illustrate the
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Figure 1. Performance and energy efficiency
by thread count on a 128-core architecture.

potential of undersubscription. We use the Sniper [2] sim-
ulator to model a 128-core architecture, and simulate the
execution of the SPEC OMP [1] and NAS Parallel Bench-
marks (NPB) [11] suites while varying thread counts. Our
simulated hardware architecture models a clustered design
with private L1 instruction and data caches and a shared
last-level cache (LLC) for every four-core cluster. We run
each benchmark with 32, 64, 96 and 128 threads, equally
distributing threads across all clusters to always keep the
full LLC capacity available. Unused cores are power-gated.
For each combination of benchmark and thread count, we
measure execution time and energy consumption for a num-
ber of the benchmark’s iterations. We then report perfor-
mance and energy efficiency1 relative to full subscription,
see Section 5 for more methodological details.

As shown in Figure 1, applications can behave in a num-
ber of ways. The N-cg/A2 benchmark (Figure 1 on the
left) is compute-bound, reducing thread count leaves pro-
cessor cores unused and degrades performance. Using the
larger C input set, however, N-cg/C (Figure 1 in the mid-
dle) is off-chip bandwidth-bound when all cores are used.
One can therefore reduce thread count by half without sig-
nificant loss in performance, yet obtain energy savings of
up to 20%. For other applications, reducing thread count
can lead to a performance increase. The working set of
N-ft/C (Figure 1 on the right) with 128 threads is too large
for the available LLC capacity. Reducing thread count to
only 32, leaving 75% of the chip’s computational resources
unused, results in a performance gain of over 3×, in addi-
tion to an increase in energy efficiency of almost 6×. These
energy savings are achieved by both lowering runtime and
reducing power consumption, caused by having fewer cores
active and by avoiding off-chip memory accesses through
improved data locality.

To summarize results over all benchmark and input set
combinations, we first define what we consider the optimum
thread count. As changing thread count has impact on both

1We define energy efficiency as 1/energy, in useful work per Joule.
2We prefix applications from the NPB suite with N-, those from

SPEC OMP with O-, and add the input set used separated with a /.
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Figure 2. Potential improvements in perfor-
mance, energy efficiency and energy-delay
product (EDP) obtainable through undersub-
scription.

performance and energy efficiency, a single optimum may
not readily exist. However, an undersubscribed chip always
consumes less power than a fully subscribed one, simply
because there are fewer active resources. Therefore, if an
undersubscribed option is faster, it also consumes less en-
ergy. We further assume that in the high-performance com-
pute space, users are interested in performance first, and
will want to save energy whenever possible. We therefore
define the optimum thread count, using a 5% guard band to
account for application variability, as follows:

An application’s optimum thread count is the
highest-performing option; or if no option is
faster than full subscription by at least 5%, the
most energy-efficient one that is no more than 5%
slower than full subscription.

According to this definition, the optimum thread count for
the workloads in Figure 1 becomes 128 (full subscription)
for N-cg/A, 64 for N-cg/C, and 32 for N-ft/C.

Figure 2 summarizes the potential improvements in
performance, energy efficiency and energy-delay product
(EDP), when each application is run at its optimum thread
count as defined above. The potential is significant. For the
five leftmost benchmarks, which are cache capacity bound,
we observe performance and energy efficiency improve-
ments of over 50% caused by capacity effects. For the
nine rightmost benchmarks, which are bandwidth-bound,
undersubscription improves energy efficiency and EDP sig-
nificantly with limited, if not a positive, impact on perfor-
mance. On the other hand, for several applications no im-
provement is possible, i.e., using all cores provides the best
option. This is the case for an additional 11 benchmarks
(listed in Table 1 but not shown in Figure 2). It is there-
fore important to recognize the behavior of an application
at runtime and select the optimum thread count through a
dynamic algorithm.

3 Clustered Cache Architectures
Current many-core architectures mostly use either pri-

vate caches for fast access to private data (e.g., Intel Xeon
Phi [5]), or a globally shared last-level (NUCA) cache
which avoids data duplication, thereby maximizing useful
LLC capacity at the expense of access latency (e.g., Tilera
TILE-Gx [18]). To trade off some duplication for faster pri-
vate data access, NUCA architectures are often augmented
by a management layer such as D-NUCA, at the cost of in-
creased complexity.

In this section we perform a detailed working set analysis
of a set of HPC-oriented multi-threaded benchmarks. We
argue for clustered cache architectures as a good fit for this
working set behavior. We then study the impact of under-
subscription and show that it naturally aligns with clustered
cache architectures.
3.1 Measuring shared working set sizes

To efficiently characterize working set sizes, we use the
Cheetah cache simulator [20], which allows miss rates for
a range of cache sizes to be computed simultaneously. A
Pin tool [16] is used to instrument the workload and send
each thread’s memory access stream to a number of Chee-
tah cache models, allowing both private and shared work-
ing sets to be measured in a single run of each applica-
tion, thread count and input set combination. We instantiate
one set of cache models as being private to each thread;
these characterize the per-thread working sets. Extra cache
models are fed by the combined memory reference stream
generated by groups of (adjacent) threads, in addition to a
global model that sees all memory accesses.

Figure 3 plots the results of this analysis. All cache mod-
els are configured for a 16-way set-associate cache with
LRU replacement. (We use the reduced iteration counts
as outlined in Table 1.) The graphs show, for a given ap-
plication, input set and thread count combination, the miss
rate for various cache sizes. The per-thread line represents
the private cache model, and plots the miss rate of a sin-
gle thread when accessing a private cache. Reading each
graph from left to right, by increasing cache size, sudden
drops in miss rate are observed followed by plateaus of sta-
ble miss rates. At each drop, the cache became large enough
to fully hold a new working set. In the case of N-bt/C
(Figure 3(a)), this happens at 4 KB which corresponds to
per-thread stack data; at 256 KB for working sets related to
inner loops; and at 32 MB which is the total amount of data
touched by a single thread in each iteration.

When comparing the per-thread miss rates with those of
the combined by-2, by-4 or by-8 measurements, the amount
of data shared between threads becomes apparent. For
N-bt/C, the combined working set grows linearly with
the number of combined threads, indicating that no data
is shared. In contrast, N-cg/C (Figure 3(b)) has a 2 MB
working set which does not grow when combining threads.



(a) N-bt/C (b) N-cg/C (c) N-ft/C (d) O-equake/ref

0.1

1

10

100

1 KB 32 KB 1 MB 32 MB 1 GB

32 threads

0.1

1

10

100

1 KB 32 KB 1 MB 32 MB 1 GB

32 threads

0.1

1

10

100

1 KB 32 KB 1 MB 32 MB 1 GB

32 threads

0.1

1

10

100

1 KB 32 KB 1 MB 32 MB 1 GB

32 threads

0.1

1

10

100

1 KB 32 KB 1 MB 32 MB 1 GB

128 threads

0.1

1

10

100

1 KB 32 KB 1 MB 32 MB 1 GB

128 threads

0.1

1

10

100

1 KB 32 KB 1 MB 32 MB 1 GB

128 threads

0.1

1

10

100

1 KB 32 KB 1 MB 32 MB 1 GB

128 threads

 0.1

 1

 10

 100

 1024  32768  1.04858e+06  3.35544e+07  1.07374e+09  3.43597e+10

O-equake/ref/128

per-thread by-2 by-4 by-8 total

Figure 3. Working set analysis: miss rates for a 16-way set-associative cache with LRU replacement,
with one cache per thread, per N threads, and a globally shared cache.

This working set is completely shared among all threads,
which indicates that N-cg/C will favor those architectures
where a shared cache capacity of at least 2 MB is available.

Dependence on thread count. As undersubscription
changes the number of threads, it is important to know how
working set sizes change with thread count. By compar-
ing the top and bottom rows of Figure 3, which correspond
to runs using 32 and 128 threads, respectively, we can ob-
serve a number of different scenarios. For the N-ft/C
benchmark (Figure 3(c)), each thread has a constant 1 MB
working set, and only the total working set size increases
(from 32 MB to 128 MB) as more threads are used. In the
case of N-cg/C, the shared 2 MB working set does not
change between the 32-thread and 128-thread cases. How-
ever, there is a larger per-thread working set which shrinks
when the number of threads is increased: 16 MB when us-
ing 32 threads, and under 8 MB with 128 threads. This be-
havior is a result of the constant total working set of 512 MB
being data-partitioned across the different threads.

Summarizing the behavior observed across all bench-
marks (see also Table 1), we consider the following cate-
gories of per-thread working set characteristics:

• Per-thread working set size reduces when spawning
more threads: this behavior is typical for data partition-
ing, and usually happens for the larger working sets
(e.g., the largest working set for N-cg/C).

• Per-thread working set size does not depend on thread
count: this mostly occurs for smaller working sets, per-
thread local data such as stacks, or globally shared
structures (e.g., private 2 KB and 256 KB working
sets of N-bt/C and the shared 2 MB working set of
N-cg/C).

• Per-thread working set size increases with thread
count: this behavior is less common, but occurs when
optimizations are made that privatize data at the cost
of increased memory usage.

An example of the last category can be found in the shared
working set of O-equake/ref (Figure 3(d)). Here, a
matrix-vector product is parallelized by having each thread
compute partial sums for each element of the result vector,
using only its private part of the matrix. These partial sums
are later combined by the main thread which leads to this
data set being shared.

Translating these different types of behavior into cache
size requirements, we see that the smallest working sets
usually do not change with thread counts. Miss rates in first-
level caches are therefore not expected to change as a result
of undersubscription.3 The largest working sets are limited
by the total data set size — which depends on input data
but not on how this data set is partitioned across threads.
For realistic input sizes, these working sets usually do not
fit in on-chip caches, although their behavior can affect the
effectiveness of large off-chip caches. More variation can
be seen in the intermediate working set range. Here, both
private and shared working sets appear, and correlation be-
tween thread count and working set size can be positive,
negative or neutral.

3.2 A case for clustered caches

From the above analysis, a number of desirable prop-
erties for many-core cache architectures become apparent.
When data sharing occurs, this should be exploited to avoid
duplication, hence increasing effective cache capacity. This
provides an argument for shared last-level caches. In ad-

3When co-scheduling threads on an SMT processor core, in which
threads share L1-I, L1-D and TLBs, pressure on these resources does
change which may be affected by undersubscription.



Benchmark Iterations Working set size
from : to / total 32t / 64t / 128t type

NAS Parallel Benchmarks — class A input set

bt 1 : 200 / 200 128 KB private
cg 1 : 15 / 15 1 MB / ∼724 KB / 512 KB private
ft 1 : 6 / 6 512 KB private
is 1 : 10 / 10 8 MB / 4 MB / 2 MB private
lu 1 : 250 / 250 4 MB private
mg 1 : 4 / 4 32 MB / 16 MB / 8 MB private
sp 20 : 39 / 400 8 MB / ∼6 MB / 4 MB private
ua 1 : 200 / 200 1 MB / ∼724 KB / 512 KB private

NAS Parallel Benchmarks — class C input set

bt 2 : 2 / 200 256 KB private
cg 2 : 2 / 75 16 MB / ∼12 MB / 8 MB private
ft 2 : 2 / 20 1 MB private
is 3 : 4 / 10 64 MB / 32 MB / 16 MB private
lu 2 : 2 / 250 1 MB / 512 KB / 256 KB private
mg 2 : 2 / 20 >16 MB private
sp 2 : 2 / 400 32 MB / 16 MB / 8 MB private
ua 2 : 2 / 200 16 MB / 8 MB / 4 MB private

SPEC OMP(M) 2001 — reference input set

ammp 2 : 2 / 200 1 MB shared
applu 2 : 2 / 50 2 MB / 1 MB / 512 KB private
apsi 2 : 2 / 50 128 KB private
equake 8 : 14 / 3334 256 KB / 512 KB / 1 MB shared
fma3d 2 : 2 / 522 32 MB / 16 MB / 8 MB private
gafort 2 : 2 / 250 64 MB / 32 MB / 16 MB private
mgrid 2 : 2 / 9 8 MB private
swim 10 : 19 / 1200 64 MB / 32 MB / 16 MB private
wupwise 2 : 2 / 200 64 MB / 32 MB / 16 MB private

Table 1. Benchmarks, input sets and their rel-
evant working set sizes.

dition, we want to support the use case where the com-
bined working set from a number of threads does not fit the
available LLC capacity. Here, thread count, and thus ag-
gregated working set, can be reduced by disabling cores;
yet all cache capacity must remain accessible to the ac-
tive cores. At the same time, private accesses to relatively
large working sets still make up for a large fraction of first-
level cache misses. This provides an argument against large
NUCA caches where hit latency depends on address assign-
ment and can be very large. While dynamic techniques have
been proposed to mitigate this effect, their additional vari-
ability and complexity are not always appreciated.

Clustered cache architectures on the other hand are easy
to implement from a hardware point of view, are completely
transparent to software, and require no active management.
By keeping the cluster size C relatively small,4 hits to pri-
vate data can always be satisfied at low latency, while du-
plication is still reduced up to a factor C. In addition, un-
dersubscription can be applied to clustered architectures by
disabling up to C−1 cores per cluster while still being able
to access all cache capacity. This effectively increases the
available per-thread cache capacity by up to a factor of C.

Huh et al. [10] make a similar analysis w.r.t. data dupli-
cation, and find that cluster sizes of around four to eight

4The cluster size C is defined as the number of cores sharing each LLC.

are most optimum. Li et al. [13] favor four-core clusters
as they find this configuration to optimize the energy-delay-
area product. Lotfi-Kamran et al. [15] propose the scale-out
processor architecture for datacenter workloads which clus-
ters 16 to 32 (smaller) cores around a shared LLC, serving
mostly instructions. Here, in this section, we made the case
for a clustered cache architecture for scientific data-parallel
workloads on many-core processors.

4 Undersubscribed Thread Scheduling
As discussed in Section 2, the optimum thread count de-

pends on the application and its input set, making it impor-
tant to recognize the behavior of each application at runtime
and select the optimum thread count through a dynamic
algorithm. We propose ClusteR-aware Undersubscribed
Scheduling of Threads (CRUST), a method that leverages
hardware performance counter information to make this de-
cision for each application phase. CRUST is implemented
in the OpenMP runtime, and operates at the granularity
of OpenMP parallel sections as identified in the applica-
tion’s source code by #pragma omp parallel. When
a given parallel section is first encountered, statistics are
collected during its execution. Different undersubscription
levels may be explored during the following occurrences.
After one or more executions of each section, CRUST will
stabilize on an optimum thread count which is used for all
of future occurrences of that section.

We propose two simple yet effective mechanisms that
can quickly find the optimum thread count. The descend al-
gorithm needs no knowledge of the architecture it is running
on but can take a number of iterations to converge. The pre-
dict algorithm is able to converge much more quickly but
instead requires some architecture-specific modeling.

4.1 Descend algorithm

The descend algorithm builds on the insight that, when
starting from full subscription and incrementally reducing
thread count, the following performance profiles may oc-
cur. Assuming an off-chip bandwidth-bound application,
lowering thread count reduces the rate of requests made to
off-chip memory, but as long as off-chip bandwidth is sat-
urated, application performance will stay constant. At the
same time, power and thus energy consumption reduce as
fewer active cores are needed to obtain the same level of
performance. For those benchmarks for which the work-
ing set is larger than the available cache capacity, reducing
thread count will reach a point where suddenly the work-
ing set does become cache-fitting, and performance spikes
up. Reducing thread count even further does not provide
any additional gains beyond this step function in per-core
performance while chip performance goes down as there
are fewer active cores. Another possible case occurs when
there is no change in LLC miss rates, but the number of
active cores is reduced so far as to no longer fully saturate
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Figure 4. Flow of CRUST algorithms. Descend
starts at full subscription and reduces thread
count as long as performance increases. Pre-
dict uses heterogeneous subscription to re-
duce the search space.

off-chip bandwidth, again reducing performance. Degener-
ate cases occur when full subscription is not off-chip band-
width bound, which implies that miss rates are low and that
undersubscription will not yield any capacity effects either;
or when the working set is too large to fit in cache even
for the smallest possible thread count making all options
off-chip bandwidth-bound. In summary, starting from full
subscription and gradually reducing thread count, perfor-
mance first stays constant as long as the application is off-
chip bandwidth-bound, optionally makes an upwards step
triggered by capacity effects, and finally reduces as too few
active cores contribute to computation.

The descend algorithm exploits this behavior by start-
ing with full subscription, then reduces thread count as
long as either performance increases, or stays level but off-
chip bandwidth utilization is high. (See Figure 4(a) for a
schematic overview.) Each parallel section is tuned individ-
ually. It is initialized to use full subscription, while each
subsequent occurrence of the section is run with one fewer
thread per cluster. During each occurrence, hardware per-
formance counters measure runtime, instruction count, and
the number of DRAM accesses, from which aggregate IPC
and DRAM bandwidth utilization are computed. By using
aggregate IPC as a performance metric, the technique is re-
silient to occurrences of the same parallel section with dif-
ferent instruction counts.5 Once performance is observed to
decrease compared to the previous occurrence, calibration
for that section ends and thread count is fixed to the pre-
vious (highest performing) setting. If full subscription was
not bandwidth-bound (measured DRAM bandwidth was be-
low 80% of its theoretical maximum), no improvement is to
be expected from undersubscription and the descend algo-
rithm immediately exits and selects full subscription.

5We disable spin loops in the runtime library using the environment
option OMP WAIT POLICY=passive. Other ways exist to exclude spin
loops from performance counter measurements.

In addition, LLC miss rates are monitored across occur-
rences of the same section, using misses per 1,000 instruc-
tions (MPKI) as a metric. An increase in miss rate while
reducing thread count signifies a growing per-thread work-
ing set. This happens when this working set is the result of
data partitioning, and a constant data set is partitioned over
ever fewer threads. In this case, the increase in per-thread
working set size negates the benefit of undersubscription,
and full subscription will be used instead.

Finally, once the optimum thread count has been deter-
mined for a particular parallel section, it will be used for
all future occurrences of that section. CRUST continues
to monitor each section’s LLC miss rate, and compares it
to the miss rate present during its corresponding calibra-
tion phase. When significant changes in miss rate occur,6

CRUST re-enters calibration for that parallel section. As the
threading algorithm already specializes for specific loops
(indicative for application phases) recalibration does not oc-
cur often, but may still happen as a result of data-dependent
behavior.

4.2 Predict algorithm

While the descend algorithm assumes almost no archi-
tectural knowledge, convergence can take multiple itera-
tions and moreover scales unfavorably when a large number
of undersubscription choices exist, i.e., many cores share a
last-level cache. We now provide an alternative algorithm
that is guaranteed to converge in at most three steps, at
the cost of a more architecture-specific model. The pre-
dict algorithm starts off by applying each of the possible
per-cluster thread counts to one cluster each (sampling in
space), i.e., one cluster runs with just a single thread, the
second cluster has two threads, etc. In our baseline ar-
chitecture, which has 32 clusters of four cores each, this
uses up four clusters; the remaining 28 clusters can be fully
subscribed to maximize performance during the calibration
phase. The undersubscribed clusters, in contrast, will al-
low the miss rate for each of the possible thread counts to
be measured. This direct measurement has to its advantage
that no modeling is required, and that effects such as shar-
ing inside a cluster, threads competing for cache capacity,
and traffic generated by hardware prefetchers are all taken
into account automatically.

At the end of a parallel section, miss rates are collected
from each cluster. Per undersubscription setting t (denot-
ing t active threads per C-core cluster), the algorithm now
knows the expected miss rate mt. In addition, the average
off-chip memory latency L, and the base and memory CPI
components are collected (CPIbase and CPImem, respec-
tively). Latency and CPI components are averaged across
the chip and need not be collected per cluster. We assume

6We use a relative difference in LLC MPKI of over 30% as the trigger
point, in addition to an absolute difference of at least 3.0 MPKI to avoid
recalibration when miss rates are insignificant.



Symbol definition

Architectural parameters
C Cores per cluster
N Number of clusters per chip
L0 Uncontended off-chip memory latency (in cycles)
BW Off-chip bandwidth (in number of accesses per cycle)
Calibration measurements
t Active threads per cluster
mt LLC miss rate for t threads (in misses per instruction)
CPIbase,mem Base and memory CPI stack components (cycles per inst.)
L Measured average off-chip memory latency (in cycles)
Computed values
AIPC Aggregate IPC of active cores (instructions per cycle)

Table 2. Variable definitions used in the predict
algorithm.

these metrics are available as hardware performance coun-
ters, or can be derived from existing counters with sufficient
accuracy. (See Table 2 for a summary of the variables used.)

From this measurement, the predict algorithm estimates
the maximum performance under both bandwidth and com-
pute bounds, for each thread count t. The available off-chip
bandwidth determines the maximum number of off-chip re-
quests that can be serviced per clock cycle (BW ). Using
the miss rate per instruction mt, we estimate maximum chip
performance (expressed as aggregate instructions per clock
cycle, AIPC) when bound by off-chip bandwidth:

AIPCBW
t = BW/mt.

This differs from Bandwidth-Aware Threading [21] in that,
rather than using linear extrapolation assuming constant
miss rates, CRUST is able to use specific miss rates for each
thread count, implicitly taking data sharing into account.

If the application cannot saturate off-chip bandwidth, it
will be compute-bound and experience a DRAM latency
close to the uncontended latency L0. We estimate per-core
CPI by first calculating the application’s memory-level par-
allelism (MLP) by dividing the observed memory latency
L by the cost per miss (with m the global miss rate under
heterogeneous subscription):

MLP =
L

CPImem/m
.

We assume that memory-level parallelism, or how much
memory latency can be overlapped versus how much of it
directly impacts execution time, is constant. This is true
for long-latency accesses that stall the reorder buffer, so
the determining factor here is the number of concurrently
outstanding memory references determined by the applica-
tion’s dependency chain. We then estimate CPImem

t using
the expected miss rate mt and the average cost per memory
access L0/MLP :

CPImem
t = mt · L0

MLP
.

Combining both equations yields the following per-core
CPI estimate:

CPIt = CPIbase + CPImem · L0 ·mt

L ·m
.

As t threads are active on each of the N clusters, aggregate
performance for compute-bound thread counts can there-
fore be estimated as:

AIPCcomp
t =

t ·N
CPIt

.

We can now determine which thread counts t are
bandwidth-bound (AIPCBW

t < AIPCcomp
t) and which

are compute-bound. For all bandwidth-bound options, per-
formance will be equal, hence we prefer the lowest thread
count as it activates the fewest cores and thus has the lowest
energy consumption. Following the intuition on which the
descend algorithm is built, the highest-performing option
will be either the last bandwidth-bound option (defined as
t = tBW ), or the next option down which will be compute-
bound (with t = tBW − 1). However, directly compar-
ing AIPCBW

tBW with AIPCcomp
tBW−1 is problematic

as AIPCcomp is usually an overestimation — even applica-
tions that are not off-chip bandwidth-bound on average can
still perceive DRAM latencies higher than L0 because of
bursty behavior and instantaneous bandwidth-induced bot-
tlenecks. While it may be possible to better estimate the ef-
fective latency experienced by the compute-bound option,
the required modeling quickly explodes in complexity and
will be very architecture-specific. Instead, we opt to have
the predict algorithm simply try out both tBW and tBW − 1
during the next two occurrences of the parallel section and
select the highest-performing one.

Degenerated cases occur when the calibration phase con-
cludes that no option is bandwidth-bound (full subscription
is selected for highest performance) or when all options are
bandwidth-bound (a single thread per cluster is selected for
lowest energy usage). As with descend, the predict algo-
rithm stores the miss rate mt on which it based its decision
and re-enters calibration when significant deviations occur.

5 Methodology
We now detail the methodology that was followed to

evaluate the effectiveness of CRUST.
5.1 Baseline architecture

We evaluate CRUST on a clustered-cache 128-core pro-
cessor as depicted in Figure 5. The chip consists of 32 tiles
with four cores each. Each core has private L1 instruction
and data caches and an L1 data prefetcher. L2 caches are
shared by all four cores on the tile; L2s on different tiles
are kept coherent through a MESI protocol with distributed
tag directories. On-chip communication occurs over a 2-D
mesh network with 512-bit wide links in each direction.
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Figure 5. Simulated architecture. Four cores
with private L1s share a last-level cache. 32
clusters are connected through a 2-D mesh
network.

Component Parameters

Core 1 GHz, 2-way issue OOO, 32-entry ROB
Branch predictor hybrid local/global predictor
L1-I 32 KB, 4 way, 1 cycle access time
L1-D 32 KB, 8 way, 1 cycle access time
L1-D prefetcher stride-based, 8 independent streams
L2 cache 1024 KB shared per tile, 16 way, 6 cycle
Coherence protocol directory-based MESI, distributed tags
On-chip network 8×4 mesh, 4 cores per tile, 1 cycle per hop

64 GB/s per link per direction
Main memory 8 memory controllers, 45 ns access latency

64 GB/s total off-chip memory bandwidth

Table 3. Simulated architecture details.

Eight DRAM controllers are placed at the chip’s edge, pro-
viding an aggregate 64 GB/s off-chip bandwidth. More
micro-architectural parameters are listed in Table 3.

5.2 Simulation infrastructure

Sniper simulator. We use a modified version of the
Sniper multi-core simulator [2], version 5.1, updated with
a cycle-level core model. Sniper exploits parallelism allow-
ing it to model our 128-core system at simulation speeds of
up to 2 MIPS on modern multicore hardware.

Power consumption. McPAT 0.8 [13] is used to esti-
mate power consumption. The McPAT integration available
in Sniper was extended with a course-grain power-gating
model, assuming the chip will power-gate individual cores
once they have been idle for at least 10 µs. Most idle peri-
ods are much longer; on average, cores can be power-gated
for over 80% of all idle time.

Applications. Workloads from the SPEC OMP [1] and
the NAS Parallel Benchmarks (NPB) [11] suites were used
to evaluate our dynamic threading method. As realistic
working sets, and thus large input sizes, are required to
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Figure 6. Improvement obtained in perfor-
mance and energy efficiency through under-
subscription over full subscription.

make this analysis meaningful, we use the reference in-
puts for SPEC OMP, and both class A and class C inputs
for NPB, but we reduce the number of iterations that each
benchmark executes to keep simulation times manageable.
Table 1 lists the benchmarks that were used, and the iter-
ations simulated in detail. The initial iterations (preceding
those listed in Table 1) are used to warm up the caches.

6 Results and Analysis
Figure 6 summarizes performance and energy efficiency

through undersubscription compared to full subscription.
To allow for calibration, we ignore the first five itera-
tions of all benchmarks. This means we are restricted to
showing results for those benchmarks where iterations are
short enough so that at least six iterations can be simu-
lated in reasonable time. According to Table 1, this in-
cludes O-equake and O-swim from SPEC OMP, and all
benchmarks from the NPB suite with the A input set ex-
cept for N-mg. This set of benchmarks includes repre-
sentatives of each type of behavior identified earlier (ca-
pacity effects, off-chip bandwidth-bound, and no advan-
tage). In addition to our CRUST algorithms introduced
in Section 4, we implement a variant of Bandwidth-Aware
Threading [21]. This method, denoted as linear B/W in Fig-
ure 6, first runs a single thread on each cluster, then extrap-
olates observed bandwidth linearly to determine how many
threads are needed to saturate off-chip bandwidth.

Analyzing the results, we can see that both CRUST al-
gorithms are able to provide performance improvements of
around 15% (harmonic mean of speedup), and improve-
ments in energy efficiency of over 20%. As expected by our
analysis in Section 2, the result is application-dependent.
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Figure 7. Scaling of DRAM bandwidth utiliza-
tion by thread count can be non-linear.

Some applications do not show any benefit, and CRUST is
able to predict that for these cases, full subscription is the
best option. Other applications see significant capacity ef-
fects (most notably N-ft, N-sp and O-equake). In some
cases, such as N-sp/A, CRUST achieves benefits that are
even larger than the static oracle case, as CRUST can deter-
mine the optimum thread count for each parallel section in-
dividually. For one application, N-ua/A, CRUST degrades
performance because this application has a large number of
small parallel sections, each of which is tuned to a different
thread count. Yet, because each loop is so short, N-ua’s
performance is best when data sharing across parallel sec-
tions can be exploited, which is no longer the case when
consecutive parallel sections use a different data partition-
ing. A simple solution to this problem is to aggregate paral-
lel sections until a minimum size is reached, and change the
thread count only at this larger granularity. Using an aggre-
gation size of 50 ms we could avoid degradation of N-ua
while not affecting the benefits for other applications.

Comparing CRUST with Bandwidth-Aware Threading
(BAT), it is clear that BAT is not aware of the cache capac-
ity effects that occur in many of the benchmarks. In fact,
even for bandwidth-bound applications BAT can make sub-
optimal decisions by not taking data sharing into account.
Figure 7 plots off-chip bandwidth utilization as a function
of thread count. For N-lu/C (Figure 7 on the left), band-
width indeed shows linear scaling so BAT can make the cor-
rect decision. When running the smaller class A input (Fig-
ure 7 on the right), however, a clustered cache can exploit
data sharing between threads that execute on the same clus-
ter. Bandwidth requirements now scale more slowly, caus-
ing BAT to overestimate bandwidth utilization and select a
thread count that is too low resulting in lower performance.
The opposite happens when the benchmark experiences ca-
pacity effects, and increasing thread count magnifies the
combined per-cluster working set beyond its LLC capac-
ity. Now, miss rates suddenly go up significantly, and so do
bandwidth requirements. BAT is not aware of this super-
linear bandwidth increase, and selects a thread count with
poor locality. In contrast, CRUST is aware of both sharing

and capacity effects, and can determine the optimum thread
count taking these effects into account. It is able to do this
by measuring miss rates for varying thread counts directly,
either by running this thread count on the complete chip
(descend) or on a select sample of clusters (predict).

7 Implications for Many-Core Design
So far, we evaluated undersubscription on a given many-

core processor with a fixed architecture. We now go one
step further and explore the following question: How should
one design a next-generation many-core processor archi-
tecture, given that dynamic undersubscription will be its
usage model? A key decision to be made during the de-
sign of a many-core processor is the allocation of area and
power budgets between cores and caches. There is a nat-
ural tension between both, as each core’s compute power
contributes directly to application performance; yet, assum-
ing the presence of data locality, sufficient cache capacity is
required to keep these cores fed with data.

Studies that explore the cores versus cache area trade-
off often assume a power-law relationship between cache
capacity and performance [9, 19]. Its effect is that when de-
voting more area to cores, application performance initially
goes up; but at some point caches become too small and av-
erage performance starts to decline. Krishna et al. [12] ex-
tend this relationship to take data sharing into account, and
they observe that traditional methods can overestimate re-
quired cache capacity by not removing duplicate data from
this equation, potentially shifting the optimum towards ar-
chitectures with a smaller cache area ratio.

Undersubscription has a similar effect. The reason why
performance decreases once the cache area ratio drops be-
low a given point, is that the working set for some appli-
cations suddenly exceeds cache capacity. A gradual reduc-
tion of cache area makes progressively more applications
fall into this category, resulting in the power law that char-
acterizes average performance. For individual benchmarks,
performance as a function of cache capacity is in fact a step
function. Using undersubscription, the point at which this
step occurs can be postponed: on architectures with more
cores and less cache, these benchmarks can be undersub-
scribed, leading to, if not optimal, at least acceptable per-
formance levels. This makes aggressive architectures (i.e.,
more cores, less cache) more interesting: as long as there
are benchmarks that benefit from the increased number of
cores, and thus achieve higher theoretical maximum chip
performance, cache-limited benchmarks can use undersub-
scription to retain reasonable performance.

To quantify this effect, we set up the following experi-
ment in which we project our architecture from Section 5
forward to a 14 nm technology node. Keeping in line with
expected technological developments, off-chip bandwidth
is kept constant at 64 GB/s, but we add 1 GB of on-package
DRAM cache connected through a 512 GB/s interface. We
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Figure 8. Performance of each architecture at different undersubscription levels.

Design A B C D E F

Cores 96 128 160 192 224 256
L2 size (MB per core) 1.5 1.0 0.8 0.5 0.4 0.3
Core fraction 25% 33% 40% 50% 58% 64%

Table 4. Cores-vs-cache area trade-off points.

use Hill and Marty’s notion of base core equivalent area
(BCE) [9], and assign an area of 1 BCE per core and 2 BCEs
per MB of last-level cache. We assume 1.5 mm2 per BCE
for a 14 nm process, as obtained through analysis of a num-
ber of publicly available die shots and accounting for less
than ideal process scaling of a 35% area reduction per tech-
nology node. Six design options are summarized in Ta-
ble 4. Each design option represents a different trade-off
in core versus cache area, but adheres to a maximum area
of 400 BCEs (equivalent to a 600 mm2 die), which is typ-
ical for large HPC chips such as Intel’s Xeon Phi [5] and
high-end GPUs such as NVIDIA’s Tesla [14].

Focusing results on specific applications first, Fig-
ure 8(a) shows that O-ammp/ref exhibits close to linear
scaling when the number of cores is increased, except for
the F variant where cache capacity finally falls below the ap-
plication’s working set. For this application, undersubscrip-
tion always reduces performance. A benchmark amenable
to undersubscription is N-ft/C, for which, according to
Figure 8(b), full subscription (the 4/4 line) works well only
on the A and B variants while performance quickly de-
grades from C onwards. Plotting N-ft/C’s working set
versus the available last-level cache capacity of each archi-
tecture variant (Figure 8(b), right) makes clear why: the
combined working set of four N-ft/C threads equals B’s
cache capacity, while for architectures with a larger fraction
of area dedicated to cores ever fewer threads are needed
to fill up all available cache capacity. This has a corre-
sponding effect on the thread count needed to obtain op-
timum performance for N-ft/C on that architecture. Fi-
nally, N-cg/C, shown in Figure 8(c), is a bandwidth-bound
application. Performance is more or less constant as long
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Figure 9. Average and per-benchmark perfor-
mance for varying cache area tradeoff points
under full and optimum subscription.

as at least around 64 cores are actively making DRAM re-
quests, which is enough to saturate off-chip bandwidth.

When looking at average performance across all bench-
marks,7 Figure 9(a) shows that without taking undersub-
scription into account, a more conservative option, design
C, would yield the highest average performance. However,
while C may be a good compromise design able to provide
acceptable performance across all benchmarks, undersub-
scription changes this balance. CRUST can improve av-
erage performance for all architectures, but those architec-
tures with smaller cache sizes will benefit more, as their av-
erage performance was impacted more by the applications
that did not fit in the cache. Now, the best average per-
formance is no longer obtained by design C, but by design
E which has 40% more cores, yielding 15% higher perfor-
mance on average. Undersubscription allows the architec-
ture to be more adaptive to differences across application’s
data access requirements. Figure 9(b) plots results per ap-
plication for the most extreme design F (normalized to each
benchmark’s performance on A): applications at the right
side of the graph are able to exploit the extra available cores,
while those towards the left suffer from F’s reduced cache
capacity but can be ‘reclaimed’ through undersubscription.

7These experiments use static undersubscription and include all bench-
mark and input combinations listed in Table 1.



8 Related Work
Undersubscription has been proposed earlier in a num-

ber of different contexts, obtaining energy savings or per-
formance improvements through a variety of mechanisms.

Hardware analysis. Guz et al. [7] provide a uniform way
to describe how thread count affects performance. They
identify a performance valley where thread count is too high
for the available cache size (amongst other performance
mechanisms), but not high enough to sustain sufficient out-
standing off-chip requests to overlap latency and obtain the
machine’s peak arithmetic performance. Yet, when limited
off-chip bandwidth is taken into account, most real archi-
tectures do not recover from this valley; moreover, trying to
keep data on-chip can yield significant energy savings over
massive multithreading by avoiding expensive (in both la-
tency and energy) off-chip accesses.

Software techniques. Chen et al. [4] explore thread
coarsening and propose how data partitioning changes at
the algorithmic level can be used to improve data reuse
across threads that share a (fully shared or clustered) cache.
Volkov [22] focuses on GPU architectures, and shows how
reduced occupancy can improve the use of registers (a re-
source shared between threads in GPUs) and avoid ex-
cessive queuing delays when accessing off-chip memory.
Since these techniques involve application or algorithmic
changes, they can achieve large benefits but require more
manual work, making them less practical than approaches
that can be integrated into the runtime or operating system.

Dynamic threading techniques. Bandwidth-Aware
Threading (BAT), proposed by Suleman et al. [21], is a
technique that uses undersubscription at the core level,
and runs multi-threaded applications with just enough
threads to saturate off-chip bandwidth. Unused cores
are power-gated to save energy and power. As shown in
Section 6, BAT’s linear extrapolation of per-thread off-chip
bandwidth requirements is suboptimal in the context of data
sharing (sub-linear growth) or competitive cache capacity
allocation (super-linear increase when transitioning from
cache-fitting to bandwidth-bound operation).

Fedorova et al. [6] study the optimum number of SMT
threads to be used on a Sun Niagara system. In addi-
tion to the SMT-specific issue of contention for execution
resources, they identify L2 thrashing (i.e., capacity con-
flicts between threads active on a single SMT core) as a
contributor to processor stalls. They then propose a non-
work-conserving operating system scheduler that selects the
number of active threads depending on the workload mix.
The implementation of this scheduler consists of highly
processor-specific modeling, however, and in addition re-
quires miss rate profiles as a function of cache capacity to

be collected upfront or provided by the compiler for each
application. This scheduler is evaluated in the context of
optimizing throughput for multiprogrammed workloads.

Yet, no existing solution is able to properly account for
data sharing, or for the interaction between cache capac-
ity effects and off-chip bandwidth usage in multi-threaded
applications running on many-core processors. Both cache
capacity and bandwidth are interrelated, i.e., a change in
last-level cache miss rates has an immediate effect on off-
chip bandwidth requirements. The CRUST approach pro-
motes data sharing and cache capacity to first-class effects,
but eschews modeling and profile input as much as possi-
ble to make the proposed methodology easily applicable. It
exploits phase information that is readily available in the
form of parallel section boundaries, and we show this tech-
nique to be able to improve both performance and energy
efficiency when running multi-threaded applications.

9 Conclusions
We explore undersubscription in the context of multi-

threaded applications running on many-core processor ar-
chitectures. Reducing the number of concurrently execut-
ing threads can significantly improve cache hit rates, or can
reduce pressure on saturated off-chip memory links. These
effects result in significant increases in both application per-
formance and energy efficiency. Whereas prior work could
only realize limited gains in practice, we propose ClusteR-
aware Undersubscribed Scheduling of Threads (CRUST),
an approach that takes data sharing into account and is
therefore able to achieve improvements in both performance
and energy efficiency of 15% on average, and up to 50%, for
a set of NPB and SPEC OMP benchmarks.

Based on these insights, we propose that future many-
core architectures use clustered caches to exploit data shar-
ing in parallel applications, and employ undersubscription
to be adaptive to differences in application data require-
ments. This way, architectures can be designed that provide
both higher average performance and consume less power
and energy across diverse workload behaviors, while being
relatively easier to implement than fully shared last-level
caches.
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