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Abstract

With the amount of data continuing to grow, extracting
"data of interest" is becoming popular, pervasive, and more
important than ever. Data mining, as this process is known
as, seeks to draw meaningful conclusions, extract knowl-
edge, and acquire models from vast amounts of data. These
compute-intensive  data-mining  applications,  where
thread-level parallelism can be effectively exploited, are the
design targets of future multi-core systems. As a result, fu-
ture multi-core systems will be required to process tera-
byte-level workloads. To understand the memory system
performance of data-mining applications, this paper pre-
sents the use of hardware-software co-simulation to explore
the cache design space of several multi-threaded data min-
ing applications. Our study reveals that the workloads are
memory intensive, have large working-set sizes, and exhibit
good data locality. We find that large DRAM caches can be
useful to address their large working-set sizes.

1. Introduction

Increasing power densities and diminishing returns from
deeper pipelines have eliminated increasing clock frequency
as means of achieving higher performance. As a result, the
design space of future high-performance processors has
shifted to chip multiprocessors (CMPs) [2, 12, 22]. Incor-
porating multiple cores on the same die presents many
memory hierarchy design choices to processor architects;
making the already difficult design decision even more dif-
ficult. Understanding the memory system requirements of
emerging applications is crucial to pick the appropriate de-
sign choice. This paper presents the memory system re-
quirements of emerging parallel data-mining applications on
small, medium, and large-scale CMPs.

Data mining is an emerging software technology that can
extract useful information from massive amounts of raw
data. The wide spread use of data-mining techniques in
fields such as medicine, finance, and entertainment require
future computing platforms to be able to process tera-
byte-level workloads. Identifying the memory system re-
quirements and the suitable memory system organization
requires extensive simulation studies. However, current
software based simulation techniques are slow and do not
allow for fast full-run exploratory studies.

In response to the slow speeds of existing software-based
simulators, FPGA-based hardware simulation has been

proposed [21]. However, resource constraints on FPGAS
and FPGA programming can sometimes create inflexibility
when using the FPGA simulation infrastructure. Alterna-
tively, both the flexibility of software and the speed of
hardware can be combined to improve simulation speeds.
For example, combining a full system simulator with VMX
support and an FPGA-based simulator can enable full sys-
tem co-simulation that is several orders of magnitude faster
than traditional simulators (e.g. 30-50 MIPS). As a result,
rather than only simulating small regions of an application,
hardware-software co-simulation can now support simulat-
ing applications when run to completion. Simulation of ap-
plications run to completions is valuable as it supports
changing application phase behavior and also helps choose
representative regions for detailed simulation. This is ex-
tremely important now as emerging applications execute
trillions of instructions.

For purposes of this paper, we present the use of hard-
ware-software co-simulation to characterize the memory
behavior of parallel data-mining applications when run to
completion. Using a full-system simulator that uses VMX
to directly execute simulated applications on the native ma-
chine and an FPGA-based cache simulator that directly
connects to the processor front-side bus, we characterize the
memory performance of parallel data-mining workloads on
small, medium, and large-scale CMPs. Our study makes the
following contributions:

= A detailed cache sensitivity study (by varying the cache
size from 4MB to 256MB) reveals that the workloads
have working-set sizes of 32MB or more (e.g. 256MB).
Such large working set sizes indicates the need for large
caches. Since large SRAM based cache organizations can
be expensive to build, alternative cache organizations us-
ing DRAM (e.g. embedded DRAM, off-die DRAM
caches, or 3D die-stacking) can be useful to reduce the
latency and bandwidth to main memory.

= A cache line sensitivity study (by varying the line size
from 64B to 4KB) reveals that cache performance im-
proves with increasing cache line size. This behavior in-
dicates that data-mining workloads exhibit good spatial
locality and benefit from caches with large line sizes.

= A prefetching study revealed that the data-mining work-
loads benefit from hardware prefetching. We observed a
33% performance improvement by enabling the hardware
prefetcher on an Intel® Xeon® machine.



Table 1: Input parameters and datasets

Workloads Parameters Size of Data Input
SNP 600k sequences, each with length 50 30MB, real datasets from HGBASE
SVM-RFE 253 tissue samples, each with 15k genes 30MB, real micro-array dataset on Cancer
RSEARCH 100MB database, search sequence size 100 | 100MB, real datasets from Gene bank
FIMI 990k transactions and mini-support=800 30MB, real dataset Kosarak: http://fimi.cs.helsinki.fi/data/
PLSA two sequences in 30k length 60K B, real DNA sequences from Gene bank
MDS 220 pages with 25k sequences 4.1M, synthetic dataset from web search document
SHOT 10-min MPEG-2 video 200MB, 720x576 resolution
VIEWTYPE | 10-min MPEG-2 video 200MB, 720x576 resolution

The rest of this paper is organized as follows. Section 2
describes the parallel data-mining workloads used in this
study. Section 3 describes the hardware-software
co-simulation methodology, Section 4 presents the experi-
ment results, Section 5 presents related work and finally
Section 6 provides conclusions.

2. Data Mining Workloads Overview

Data mining is an emerging software technology used to
extract meaningful information and relationships from a
large amount of raw data. Data mining takes advantage of
advances in the fields of artificial intelligence (Al) and sta-
tistics by using algorithms such as pattern recognition, ma-
chine learning, decision making, and statistical modeling.
This section briefly introduces some popular data mining
algorithms and the associated workloads used in this study.
Table 1 summarizes the workloads and their input sets.

2.1. Bayesian Network Workloads

A Bayesian Network (BN) is a probabilistic model that
encodes probabilistic relationships between variables of
interest. Learning the structure of a BN from data is the
most important task of BN applications [19]. The goal of
BN is to identify the statistic relationship between variables,
and usually at the same time, the conditional probability
distribution of each variable can also be determined.

Single nucleotide polymorphisms (SNPs) are DNA se-
quence variations that occur when a single nucleotide is
altered in a genome sequence. The SNP workload [4] uses
the hill climbing search method, which selects an initial
starting point and searches that point's nearest neighbors.
The neighbor that has the highest score is then made the
new current point. This procedure iterates until reaching a
local maximum score.

2.2. Classification and Prediction Workloads

Classification means assigning an object a pre-defined
class/category/label. Prediction can be viewed as the con-
struction and use of a model to access the class of an unla-
beled sample. Classification and prediction have numerous
applications including credit approval, medical diagnosis,
performance prediction, and selective marketing.

A classifier training problem has an input dataset called
the training set that consists of example records with a
number of attributes. The objective of a classifier training
algorithm is to use this training dataset to build a model
such that the model can be used to assign unclassified re-
cords into one of the defined classes [10]. Support Vector
Machines-Recursive Feature Elimination (SVM-RFE) [4] is
one of feature selection method, which is extensively used
in disease finding (gene expression). The selection is ob-
tained by a recursive feature elimination process: at each
RFE step, a gene is discarded from the active variables of a
SVM classification model, according to some prior criteria.

A Cocke-Younger-Kasami (CYK) algorithm is a basic
parsing algorithm for context-free language. RSEARCH [4]
uses it for RNA secondary structure homolog searches. It
decodes the Stochastic Context-Free Grammar (SCFG) to
search a single RNA sequence against the database to find
its homologous RNAs.

2.3. ARM Workloads

Association Rule Mining (ARM) is a commonly used
data-mining problem. It is the process of analyzing a set of
transactions to extract association rules. Frequent Itemsets
Mining (FIM) is the basis of ARM. It tries to discover
groups of items or values that co-occur frequently in a
transactional data set. Many FIMI (FIM Implementation)
algorithms have been proposed in literature, including
FP-growth and Apriori-based algorithms, where FP-growth
is proved to be much faster than the other FIM implementa-
tions. The FIMI workload [5] in use is based on the FP-Zhu
package, which includes three stages: first-scan, FP-tree
construction, and mining.

2.4. Optimization Workloads

Sequence alignment is an important tool in bioinformat-
ics which is used to identify the similar and divergent re-
gions between two sequences. PLSA [4, 15] uses a dynamic
programming approach to solve sequence matching problem.
It is based on the algorithm proposed by Smith and Water-
man, which uses local alignment to find the longest com-
mon substring in sequences.

2.5. Text Mining Workloads



Text mining is the nontrivial extraction of implicit, pre-
viously unknown, and potentially useful information from a
large amount of textual data. Web search engines find and
rank documents based on maximizing relevance to the user's
query, yet these systems still require users to read hundreds
of closely-ranked documents to locate the relevant sections
of text they are looking for. By synthesizing information
common to retrieved documents, multi-document summari-
zation can help users of information retrieval systems to
find relevant documents with a minimal amount of reading.
Multi-Document Summarization (MDS) workload [6] com-
bines the advantages of the previous two methods, the
graph-based ranking algorithm and the Maximum Marginal
Relevance (MMR) algorithm, not only considering the
similarities between a user's query and the main topic of the
documents, but also minimizing the possible redundancy in
the summary result.

2.6. Video Mining Workloads

Rapid advances in the technology of media capture and
storage have contributed to an amazing growth of digital
video content. As the growth of content generation and dis-
semination explodes, mining information from large video
data becomes increasingly important, e.g., video surveil-
lance, sport highlights detection, and home video retrieval,
to name a few.

Parsing a video can be analyzed on four levels: frame,
shot, scene, and the whole video sequence. To analyze the
video content semantically, shot boundary detection is a
prerequisite step. In the shot detection workload [6, 16], a
color histogram of 48 bins in RGB space, 16 bins for each
channel, and a pixel-wise difference feature, as a supple-
ment to the color histogram, are used to introduce spatial
information and infer the final shot information.

View type plays a critical role in video understanding.
The View type workload [6, 17] uses playfield area and
player size to determine four kinds of view type: global,
medium, close-up, and out of view with each key frame [8].
The corresponding low-level processing includes playfield
segmentation by the HSV dominant color of playfield and
connect-component analysis. The dominant color of the
playfield is adaptively trained by the accumulation of the
HSV color histogram on a lot of frames.

We choose application parameters and datasets such that
they represent realistic and time consuming executions. Ta-
ble 1 shows the parameters and dataset sizes. Note that for
some applications, like FIMI, only a limited number of real
large datasets exist. For such workloads moderate or widely
cited synthetic datasets are used.

3. Hardware-Software Co-Simulation

Simulation speed has always been a concern in the field
of computer architecture. Complex performance simulators
executing at speeds in the order of KIPS are quite common

today. The speed issue is exacerbated when it comes to
multi-core platform simulation.

FPGA-based emulation [3, 20] is now capable of emu-
lating complex micro architectures within a single FPGA.
However, we are still faced with the non-trivial task of in-
terconnecting multiple FPGAs and bringing up the BIOS
and operating system (OS) on top of that platform in order
to emulate large-scale multi-core architectures.

Our simulation methodology combines the speed of
FPGA emulation with the flexibility of software simulation.
The basic idea is to use an execution driven simulation
framework integrated with FPGA emulators to create a
co-simulation framework. A combination of the native exe-
cution capabilities of simulators and fast emulation speeds
provides a fast and flexible co-simulation environment de-
livering MIPS of system simulation throughput. Our plat-
form is based on Intel's configurable cache emulator
Dragonhead and its full system simulator SoftSDV [24].

3.1. Dragonhead

Dragonhead is an FPGA-based passive cache emulator.
It snoops memory transactions from FSB and emulates a
pre-defined cache algorithm. It can provide cache perform-
ance data in real time.

Figure 1: Dragonhead cache emulator

Figure 1 shows the block diagram of Dragonhead.
Dragonhead has 6 FPGAs: AF, CC0, CC1, CC2, CC3, and
CB. AF gets FSB transactions from LAI and sends them to
CC after regulation. CC processes the coming requests and
generates cache performance data. CB is responsible for
configuring AF, CC, and collecting cache performance data.
A host computer reads performance data from CB every 500
microseconds.

Since Dragonhead is based on an FPGA, different kinds
of cache algorithms can be implemented. Currently,
Dragonhead emulates cache sizes from 1M to 256M, cache
line size from 64B to 4096B, with LRU replacement policy.
Dragonhead emulates a shared LLC at a speed of 100MHz.

3.2 SoftSDV
SoftSDV is an execution-driven full system simulator. It

provides functional models that can boot real BIOS, un-
modified versions of an OS, and performance models that
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Figure 3: Hardware Software Co-simulation Platform

enable users to conduct various studies. One of the recent
enhancements to SoftSDV execution -driven simulation is
the introduction of native execution capabilities called DEX
or Direct Execution. SoftSDV makes use of the VMX capa-
bilities of Intel processors and directly executes simulated
code on the underlying CPU, which offers a several magni-
tude speedup over traditional functional simulation. With
the help of VMX, SoftSDV allows workloads to run on the
processor natively for a specific duration; it can get the con-
trol back, save the processor state, and restart it from the
saved state at a later time. This makes it possible for
SoftSDV to schedule MP workloads on a UP system by
time slicing the processor execution and exposing it as an
MP system to the OS running on top of the virtual platform.
This helps simulate multiple processors using a single proc-
essor or with fewer processors than the simulated guest.

However, DEX only supports the functional simulation
part of the execution-driven simulation. In order for us to
get the performance impact of future platform architectures
that are being investigated, there needs to be performance
models exercised during this direct execution. Due to the
direct execution nature of DEX, however, performance
simulations are not supported in DEX mode. Performance is
done by switching back to binary-translation-based software
simulation mode, which slows the simulation speed down
into KIPS. Today DEX is used to fast forward to the point
of interest before switching to the detailed execution-driven
simulation with performance models. This enables the OS to
be booted and workloads to be run in multi-core environ-
ments with up to 64 HW threads. Therefore, while DEX
direct execution mode is highly effective in fast forwarding
the functional simulation, it cannot be used to drive a per-
formance model for performance evaluation.



Table 2: Workload characteristics

Instruction % Memory | % Memory Read | DL1 Accesses/|DL1 Misses/| DL2 Misses /
Workloads IPC | Count (Billions) | Instructions Instructions 1000 Inst 1000 Inst 1000 Inst

SNP 0.12 71.26B 50.75% 37.41% 508 12.01 7.77
SVM-RFE | 0.87 37.02B 45.14% 43.64% 451 61.40 2.96
MDS 0.06 217.8B 49.34% 43.46% 493 51.00 18.95
SHOT 0.61 15.01B 53.85% 30.66% 538 18.86 4.07
FIMI 0.51 50.28B 47.10% 35.74% 471 15.99 3.76
VIEWTYPE | 0.49 33.61B 49.02% 36.86% 490 31.77 3.56
PLSA 1.08 356.8B 83.10% 46.66% 831 4.60 0.18
RSEARCH | 0.62 53.9B 42.3% 33.2% 423 10.65 0.72

3.3 HW-SW Co-simulation: Dragonhead + SoftSDV

As we described in the last two sections, Dragonhead is
capable of running emulation at very high speeds, but is
limited by the platform it is attached to. SoftSDV DEX pro-
vides a fast and highly flexible simulation environment, but
lacks performance modeling support. We use a new
co-simulation methodology to run SoftSDV in DEX mode
while enabling it to drive a performance model through in-
tegrated Dragonhead emulation. By doing so, we exploit the
flexibility and multi-core support of SoftSDV and the per-
formance simulation speed of FPGA emulation. Three
technologies play roles in this co-simulation environment: a
flexible full system simulation environment provided by
SoftSDV, DEX Native execution supported by VMX, and
the fast performance emulation provided by Dragonhead.

The basic idea behind co-simulation is making the simu-
lation and emulation environments communicate. Since
Dragonhead is already snooping on FSB, we use the same
FSB interface for this communication purpose (Figure 2).
Some memory transactions are predefined as messages from
SoftSDV to Dragonhead. SoftSDV can send the following
information to Dragonhead via these memory transaction
messages.

1. Start emulation

2. Stop emulation

3. Core-ID

4. Instruction retired

5. Cycles completed

While SoftSDV simulates several virtual cores on a sin-
gle core by processor virtualization through scheduling,
Dragonhead connected to the FSB performs cache emula-
tion for these virtual processors. This means that a physical
processor will execute the work for multiple logical cores in
a sequential manner, scheduled by the DEX driver. During
this direct execution time, Dragonhead sitting on the bus
could continue to emulate the cache, and it is aware of the
core ID that is being run natively in that time slot. This en-
ables multi-core cache emulation on the FPGA platform.

Start and stop emulation allows the emulator to avoid
memory accesses outside of the simulated workload. For
example, the SoftSDV code and the host OS will also exe-

cute during the simulation, and by restricting the emulation
to the window between start and stop, these accesses are
excluded. Core ID allows the cache emulator to identify the
memory accesses originating from different simulated cores
and emulate accordingly. Instructions retired and cycles
completed are useful in computing instruction and time
synchronized statistics such as MPI and miss rate. The time
and instruction synchronization are important, since the
simulation and emulation run in two separate time domains.

A pictorial representation of the integration of SoftSDV
and Dragonhead is shown in Figure 3. The real platform we
are using includes a DP system integrated with a Dragon-
head emulator. SoftSDV DEX runs on this system to pro-
vide a virtual platform of cores scaled from 1 to 32. The
whole system can run at 50MIPS and can provide cache
performance data in real time.

4. Memory Characterization Results

We use hardware-software co-simulation to characterize
the memory system performance of data-mining workloads
on CMPs of different sizes. We present application instruc-
tion profile, cache size and cache line size sensitivity studies,
and the sensitivity of the workloads to prefetching.

4.1. Experimental Methodology

To explore the memory system performance, we run the
data-mining workloads on three simulated CMP systems: a
small-scale CMP (8 cores, SCMP), a medium-scale CMP
(16 cores, MCMP), and a large-scale CMP (32 cores,
LCMP). All cores of the CMP are assumed to be sin-
gle-threaded. The workloads are all compiled with aggres-
sive compiler optimizations and are run to completion using
representative data input sets (see Table 1).

4.2. Workload Characteristics

Table 2 presents the application characteristics of the
workloads run to completion in single-threaded mode. The
data was collected on a Pentium 4 machine (8KB L1 cache,
512KB L2 cache) using the Intel VTune® analyzer [13].
For each application, we present the total number of instruc-



tions executed and the distribution of instructions that ref-
erence memory. The instruction profile indicates that
roughly half of the instructions (as many as 83% for the
PLSA) reference memory. We also observe that memory
read instructions constitute 56-96% of total memory in-
structions. Since these workloads intensively read and ana-
lyze data to discover meaningful patterns or relationships,
the large share of memory instructions, especially memory
read instructions, is to be expected.

In addition to the instruction profile, Table 2 also pro-
vides the L1 and L2 cache performance. For each level of
the cache, we present the number of accesses and misses per
1000 instructions. Except for PLSA and RSEARCH, which
have relatively low L2 cache miss rates, all other applica-
tions experience high L2 cache miss rates. Comparing the
IPC numbers in Table 2, we observe that applications with
high L2 cache miss rates have low IPC performance: for
example, 0.06 for MDS, and 0.12 for SNP. To gain better
insight on the memory system requirements of these appli-
cations, we conduct a cache sensitivity study to determine
the suitable cache size.

4.3. LLC Performance of SCMP, MCMP, and LCMP

We evaluate the cache performance of multi-threaded par-
allel workloads on different sized CMPs. Figure 4 presents
the LLC performance (in terms of cache misses per 1000
instructions) with a 64 byte line size on an 8-core
small-scale CMP. The x-axis presents the cache size and the
y-axis presents the misses per 1000 instructions.
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Figure 4: LLC miss per 1000 instructions on SCMP (8 cores)

The figure shows that most applications (besides MDS)
benefit from increasing the cache size. MDS receives no
benefit with the simulated cache sizes because one of its
frequently referenced data structures is a sparse matrix of
300MB. On the other hand, of the workloads that benefit
from increasing the size of the cache, we observe that SNP
has two working set sizes, first at 16MB and the next at
128MB, SHOT has a 32MB working set size, VEWTYPE
and FIMI have 16MB working set sizes, while SVM-RFE,

PLSA, and RSEARCH each have 4MB working set sizes'.
The large working-set size for some of the workloads indi-
cates the need for large on-chip caches. Since large SRAM
cache organizations can be expensive to build, alternative
cache organizations using DRAM (e.g. embedded DRAM
(eDRAM), off-die DRAM-based large last-level caches, 3D
die-stacking) are essential to reduce the latency and band-
width to main memory.

Figures 5 and 6 illustrate the cache performance of scal-
ing the number of threads per workload to simulate an
MCMP (16 cores) and an LCMP (32 cores) respectively.
The cache behavior of these workloads based on
thread-scaling groups them into two possible categories: (a)
all threads share a primary data structure (b) all threads
mostly work on private data structures and a small shared
data structure is used for book keeping.
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Figure 5: LLC miss per 1000 instructions on MCMP (16 cores)
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Figure 6: LLC miss per 1000 instructions on LCMP (32 cores)

From the figure, MDS, SVM-RFE, and SNP fall into the
first category as their cache performance does not vary with
increasing thread count. Such behavior indicates that the
workloads operate on a global working set and additional
threads contribute minimal private data.

The working set size of FIMI, RSEARCH, and PLSA
increases with increasing thread count. This is because each
additional thread adds additional private data to the work-

1SVM-RFE behaves different from [14] due to data blocking optimizations.



load data footprint, hence increasing the overall working-set
of the workload. The increase in footprint translates into
decreased cache performance. For example, all threads in
FIMI share a read-only global tree structure, and each
thread operates on a portion of the tree. Additionally, each
thread also allocates private data to compute and store the
temporary mining results. For these workloads, the footprint
of the global working set is much larger than that of the
additional private per-thread data. As a result, the total
footprint does not scale linearly with the number of threads,
and the additional per-thread private data footprint causes
20-30% increase in the number of cache misses.

On the other hand, for SHOT and VIEWTYPE applica-
tions, each thread of the workload operates on a very small
shared data structure and relatively large private working set
(about 4MB per thread for SHOT and 1MB per thread for
VIEWTYPE). As a result, the total working set increases
almost linearly with the number of threads, and the cache
performance worsens when scaling the number of cores. For
example, with a 32MB cache, the cache miss rate is in-
creased by about 50-60% for SHOT and VIEWTYPE when
scaling the core count from 8 to 16 cores. On MCMP, the
working set for FIMI and RSEARCH is about 16MB and
8MB (similar to SCMP), while for SHOT and VIEWTYPE
applications, the working set is twice that of SCMP, that is
about 64MB and 32MB respectively.

Figure 6 further confirms our observations and analysis
in comparing Figure 4 and 5. Like in Figure 4, PLSA, MDS,
SVM-RFE, and SNP do not show obvious changes in cache
performance when scaled to LCMP. Based on our under-
standing of these workloads, we believe that the cache per-
formance of these workloads will not scale on a large num-
ber of cores, even on 128 cores. For these workloads, a
small LLC, such as 8MB, will deliver a good memory sub-
system performance. On the other hand, for FIMI and
RSEARCH, cache misses increase when scaling the core
count from 16 to 32, due to an increased working set. On
LCMP (32 cores), the working set for FIMI and RSEARCH
is about 32MB and 16MB, respectively, compared to
MCMP. The working set for these two workloads is in-
creased nearly linearly with the number of cores. Based on
these observations and the knowledge of these workloads,
we project that the working set of these two workloads will
further increase as core numbers increase, and their working
set will exceed 32MB on 128 cores. Thus, a large DRAM
cache can provide good memory subsystem performance.
As for SHOT and VIEWTYPE, the working set scales line-
arly with the number of cores as each thread maintains a
large private working set and little data is shared among
threads. On LCMP, the working set of SHOT and VIEW-
TYPE is about 128MB and 64MB; therefore, they are cer-
tain to be good candidates for large DRAM caches.

4.3. Cache Line Size Scaling Impact

Figure 7 presents the cache performance of the workloads
with different cache line sizes on LCMP with a 32MB LLC.

We observe that all workloads achieve better cache per-
formance when the cache line size is increased. Particularly,
we observe that SHOT, MDS, SNP, and SVM-RFE almost
get linear miss reductions (around 1/3 to 1/4) from 64B to
256B, but the trend diminishes quickly from 256 to 1024
bytes. For other workloads, the improvement is not that sig-
nificant. The workloads that favor large cache line sizes are
those that exhibit a streaming constant stride access pattern.
For example, SHOT iterates on a large array with a constant
stride, and the MDS application iterates through a large
compressed matrix with constant stride. The figure shows
that a 256 byte cache line provides the maximum benefit,
hence we expect that a 256-byte line size is sufficient for
large DRAM caches.
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Figure 7 Line size sensitivity on LCMP with 32MB LLC

Based on the cache line size sensitivity study and our un-
derstanding of these workloads, we expect the large amount
of spatial locality exhibited by the workloads to be captured
by a hardware stride prefetcher. The next section, evaluates
the performance of hardware prefetching for the workloads
on a real machine.

4.4. Effects of Hardware Prefetching

Figure 8 presents the performance benefit of hardware
prefetching measured on a 16-way Unisys machine. The
Unisys machine is an 1A-32 3.0 GHz Intel Xeon®
shared-memory multiprocessor system that supports
stride-based hardware prefetcher. We now present the bene-
fits of hardware prefetching for the workloads when run in
single-threaded and 16-threaded mode when compared to
the same system with the hardware prefetcher turned off.

Since these workloads have large working-set sizes with
algorithms that exhibit linear access patterns (in forward
and backward directions), a hardware prefetcher can effec-
tively prefetch the required data into the processor cache,
hide memory latency and improve performance. Figure 8
shows that the performance of all applications is considera-
bly improved. For some workloads, such as VIEWTYPE,
FIMI, PLSA, RSEARCH, SHOT, and SVM-RFE, the par-
allel version benefits more from hardware prefetching than
the serial version. This is most likely due to multiple data
streams recoghized by the prefetcher and the sufficient



bandwidth available for the issue of prefetches. For other
workloads, such as SNP and MDS, parallel versions of these
workloads impose higher contention on the bandwidth than
serial versions due to high cache miss rates. As a result,
little bandwidth is available for hardware prefetching. Thus,
for such workloads, the performance benefit with hardware
prefetching is better for serial versions of the workload.
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Figure 8: Performance gain of hardware prefetch

In summary, the workloads evaluated in this study are a
representative set of memory-intensive data-mining work-
loads. A cache size sensitivity study revealed that most
workloads have large working set sizes and can benefit from
large DRAM caches. When increasing the thread count of
each workload, we observe two behaviors. First, workload
threads that reference only global shared data structures
experience marginal increases in cache misses. On the other
hand, workload threads that reference mostly private data
structures show significant increases in cache misses. Based
on our knowledge of the algorithm used by the workloads,
we believe that 5 of the 8 workloads will benefit from a
large DRAM cache when scaled to a 128-core CMP. Finally,
since workloads exhibit good spatial locality, large cache
line sizes and hardware prefetching can be helpful in im-
proving cache performance.

5. Related Work

As data-mining workloads become mainstream applica-
tions running on future processors, it is critical to under-
stand the performance characteristics of these workloads on
future CMPs. Both industry and academia have invested
resources in characterizing the scalability and performance
of emerging data-mining applications. Chen et al. investi-
gated the scalability and performance of data-mining bioin-
formatics applications [4]. Zambreno et al. composed the
data-mining benchmark suite, Minebench, and analyzed
important performance characteristics on an 8-way shared
memory machine [26]. Jaleel et al. [14] characterized the
LLC performance and data-sharing behavior of parallel
bioinformatics workloads.

Recent studies have also investigated the design policies
for the cache hierarchy of CMPs. Liu et al. discussed the
tradeoffs of implementing shared/private caches and pro-
posed a mechanism of allocating multiple last-level private
caches to one core of a CMP [18]. Chishti et al. presented
mechanisms for optimizing replication, coherence commu-
nication, and for exploiting unused cache space in CMPs [7].
Zhang et al. proposed victim replication to achieve the
benefits of private caches with shared caches [27]. Hsu et al.
[11] explored the cache design space for large-scale CMPs.

Existing work has also focused on understanding the
memory behavior and performance of parallel workloads.
Abandah et al. proposed a configuration-independent ap-
proach to analyze the working set, concurrency, and com-
munication patterns, as well as the sharing behavior of
shared memory applications [1]. Jaleel et al. characterized
the memory and sharing behavior of parallel workloads us-
ing the binary instrumentation tool, Pin [14]. Barroso et al.
characterized the memory system behavior using ATOM
[23], performance counters on an Alpha 21164, and the
SimOS simulation environment. Woo et al. characterized
several aspects of the SPLASH-2 benchmark suite [25] us-
ing an execution-driven simulation with the Tango Lite [9]
tracing tool. Nurvitedhi et al. used an FPGA-based cache
model (PHASE) that connects directly to the front-side bus
to analyze the shared vs. private L3 cache behavior of
SPECjAppServer and TPC-C [21].

Our work differs from prior work in that we use hard-
ware-software co-simulation to conduct full-run memory
performance studies of parallel workloads on small, me-
dium, and large-scale CMPs. We use a full-system simula-
tor that directly executes simulated applications on the na-
tive machine using VMX support. Cache performance
analysis is done via an FPGA-based cache simulator that is
directly connected to the front-side bus. Unlike existing
software based simulation techniques, the hard-
ware-software co-simulation methodology can simulate
workloads at speeds of 30-50 MIPS.

6. Conclusions

The widespread use of data-mining techniques in
emerging fields such as medicine, finance, and entertain-
ment requires future computing platforms to be able to
process terabyte-level workloads. This paper presents the
memory system requirements of parallel data mining work-
loads on small, medium, and large scale CMPs. We use a
hardware-software co-simulation infrastructure that com-
bines the flexibility of full-system software simulation with
an FPGA-based cache emulator. The co-simulation infra-
structure simulates applications to completion at speeds of
30-50 MIPS. Our studies with the data-mining applications
reveal that they have large working sets and can benefit
from large DRAM based last-level caches. Additionally, the
workloads benefit from large cache lines due to the presence
of high spatial locality. Prefetching studies demonstrated up
to 33% improvements in performance on real machines.
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